-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
170 additions
and
168 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -4,189 +4,186 @@ import { storePrompt } from "./metrics/prompt"; | |
import { storeUsageByEmbeddingId } from "./metrics/usage"; | ||
// Assumed environme | ||
import { | ||
ChatMessage, | ||
Document, | ||
MongoDBAtlasVectorSearch, | ||
VectorStoreIndex, | ||
storageContextFromDefaults, | ||
ChatMessage, | ||
Document, | ||
MongoDBAtlasVectorSearch, | ||
VectorStoreIndex, | ||
storageContextFromDefaults, | ||
} from "llamaindex"; | ||
import { OpenAI, serviceContextFromDefaults } from "llamaindex"; | ||
import { Db, MongoClient, ObjectId } from "mongodb"; | ||
import { Db, MongoClient } from "mongodb"; | ||
|
||
// Assuming we've defined or imported types for the Hackathon Application | ||
|
||
export type Haikipu = { | ||
id: string, | ||
address: string, | ||
title: string, | ||
type: string, | ||
timestamp: string, | ||
contextSummary: any, | ||
haiku: string, | ||
explainer: string, | ||
id: string; | ||
address: string; | ||
title: string; | ||
type: string; | ||
timestamp: string; | ||
contextSummary: any; | ||
haiku: string; | ||
explainer: string; | ||
}; | ||
|
||
const url = process.env.MONGODB_URL || 'mongodb+srv://At0x:[email protected]/?retryWrites=true&w=majority' | ||
const url = | ||
process.env.MONGODB_URL || | ||
"mongodb+srv://At0x:[email protected]/?retryWrites=true&w=majority"; | ||
|
||
const client = new MongoClient(url); | ||
await client.connect(); | ||
// Database Name | ||
|
||
async function llamaindex(payload: string, id: string) { | ||
const vectorStore = new MongoDBAtlasVectorSearch({ | ||
mongodbClient: client, | ||
dbName: "nerdWorkState", | ||
collectionName: "nerdIndex", // this is where your embeddings will be stored | ||
indexName: "nerd_index", // this is the name of the index you will need to create | ||
}); | ||
|
||
// now create an index from all the Documents and store them in Atlas | ||
const storageContext = await storageContextFromDefaults({ vectorStore }); | ||
|
||
const essay = payload; | ||
|
||
// Create Document object with essay | ||
const document = new Document({ text: essay, id_: id }); | ||
console.log({ document }); | ||
// Split text and create embeddings. Store them in a VectorStoreIndex | ||
const result = await VectorStoreIndex.fromDocuments([document], { storageContext }); | ||
const embeddingResults = await result.getNodeEmbeddingResults([document]); | ||
console.log({ result, embeddingResults }); | ||
const db = client.db("nerdWorkState"); // Connect to the database | ||
const hackIndex = db.collection("nerdIndex"); | ||
|
||
const embedding = await hackIndex.findOne({ "metadata.doc_id": id }); | ||
|
||
console.log({ embeddingId: embedding?.id }); | ||
console.log(`Successfully created embeddings in the MongoDB collection`); | ||
return { embeddingId: embedding?.id as string, result: embeddingResults }; | ||
const vectorStore = new MongoDBAtlasVectorSearch({ | ||
mongodbClient: client, | ||
dbName: "nerdWorkState", | ||
collectionName: "nerdIndex", // this is where your embeddings will be stored | ||
indexName: "nerd_index", // this is the name of the index you will need to create | ||
}); | ||
|
||
// now create an index from all the Documents and store them in Atlas | ||
const storageContext = await storageContextFromDefaults({ vectorStore }); | ||
|
||
const essay = payload; | ||
|
||
// Create Document object with essay | ||
const document = new Document({ text: essay, id_: id }); | ||
console.log({ document }); | ||
// Split text and create embeddings. Store them in a VectorStoreIndex | ||
const result = await VectorStoreIndex.fromDocuments([document], { storageContext }); | ||
const embeddingResults = await result.getNodeEmbeddingResults([document]); | ||
console.log({ result, embeddingResults }); | ||
const db = client.db("nerdWorkState"); // Connect to the database | ||
const hackIndex = db.collection("nerdIndex"); | ||
|
||
const embedding = await hackIndex.findOne({ "metadata.doc_id": id }); | ||
|
||
console.log({ embeddingId: embedding?.id }); | ||
console.log(`Successfully created embeddings in the MongoDB collection`); | ||
return { embeddingId: embedding?.id as string, result: embeddingResults }; | ||
} | ||
|
||
async function runLlamaAndStore( | ||
db: Db, | ||
usedEmbeddingIds: string[], | ||
promptMessages: any, | ||
haikipu: Haikipu, | ||
) { | ||
const haikuId = haikipu.id; | ||
const { embeddingId } = await llamaindex(JSON.stringify(haikipu), haikuId); //should we modify this id? | ||
// store in DB | ||
const promptResult = await storePrompt( | ||
db, | ||
haikipu, | ||
promptMessages, | ||
embeddingId, | ||
usedEmbeddingIds, | ||
); | ||
const usageResult = await storeUsageByEmbeddingId(db, haikuId, embeddingId, usedEmbeddingIds); | ||
const evaluationResult = await storeEvaluationByProject(db, haikuId, usedEmbeddingIds, embeddingId, haikipu); | ||
return { | ||
promptResult, | ||
usageResult, | ||
evaluationResult, | ||
}; | ||
async function runLlamaAndStore(db: Db, usedEmbeddingIds: string[], promptMessages: any, haikipu: Haikipu) { | ||
const haikuId = haikipu.id; | ||
const { embeddingId } = await llamaindex(JSON.stringify(haikipu), haikuId); //should we modify this id? | ||
// store in DB | ||
const promptResult = await storePrompt(db, haikipu, promptMessages, embeddingId, usedEmbeddingIds); | ||
const usageResult = await storeUsageByEmbeddingId(db, haikuId, embeddingId, usedEmbeddingIds); | ||
const evaluationResult = await storeEvaluationByProject(db, haikuId, usedEmbeddingIds, embeddingId, haikipu); | ||
return { | ||
promptResult, | ||
usageResult, | ||
evaluationResult, | ||
}; | ||
} | ||
|
||
// Revised function suited for hackathon application data | ||
async function generateHackathonProposal(haikiput: Haikipu, systemPrompt: string, assistantPrompt?: string, userPrompt?: string) { | ||
const messages: ChatMessage[] = [ | ||
{ | ||
role: "system", | ||
content: systemPrompt | ||
}, | ||
{ | ||
role: "assistant", | ||
content: assistantPrompt | ||
}, | ||
{ | ||
role: "user", | ||
content: userPrompt | ||
}, | ||
]; | ||
|
||
const llm = new OpenAI({ | ||
model: (process.env.MODEL as any) ?? "gpt-4-0125-preview", | ||
maxTokens: 512, | ||
additionalChatOptions: { response_format: { type: "json_object" } }, | ||
}); | ||
|
||
const serviceContext = serviceContextFromDefaults({ | ||
llm, | ||
chunkSize: 512, | ||
chunkOverlap: 20, | ||
}); | ||
|
||
const chatEngine = await createChatEngine(serviceContext); | ||
if (!chatEngine) { | ||
throw new Error("datasource is required in the request body"); | ||
} | ||
|
||
// Convert message content from Vercel/AI format to LlamaIndex/OpenAI format | ||
|
||
const response = await chatEngine.chat({ | ||
message: "Evaluate the summary and create a Haikipu.", | ||
chatHistory: messages, | ||
}); | ||
console.log({ | ||
response, | ||
serviceContext, | ||
raw: response.response, | ||
firstNode: !!response.sourceNodes?.length && response.sourceNodes[0].hash, | ||
}); | ||
const usedEmbeddingIds = response.sourceNodes?.map(node => node.id_) || []; | ||
|
||
const parsedResponse = JSON.parse(response.response); | ||
|
||
const haikipu: Haikipu = { | ||
title: haikiput.title, | ||
id: haikiput.id, | ||
address: haikiput.address, | ||
timestamp: Date.now().toString(), | ||
type: haikiput.type, | ||
contextSummary: haikiput.contextSummary, | ||
haiku: parsedResponse.haiku, | ||
explainer: parsedResponse.haikuExplainer, | ||
}; | ||
|
||
return { haikipu, messages, usedEmbeddingIds }; | ||
async function generateHackathonProposal( | ||
haikiput: Haikipu, | ||
systemPrompt: string, | ||
assistantPrompt?: string, | ||
userPrompt?: string, | ||
) { | ||
const messages: ChatMessage[] = [ | ||
{ | ||
role: "system", | ||
content: systemPrompt, | ||
}, | ||
{ | ||
role: "assistant", | ||
content: assistantPrompt, | ||
}, | ||
{ | ||
role: "user", | ||
content: userPrompt, | ||
}, | ||
]; | ||
|
||
const llm = new OpenAI({ | ||
model: (process.env.MODEL as any) ?? "gpt-4-0125-preview", | ||
maxTokens: 512, | ||
additionalChatOptions: { response_format: { type: "json_object" } }, | ||
}); | ||
|
||
const serviceContext = serviceContextFromDefaults({ | ||
llm, | ||
chunkSize: 512, | ||
chunkOverlap: 20, | ||
}); | ||
|
||
const chatEngine = await createChatEngine(serviceContext); | ||
if (!chatEngine) { | ||
throw new Error("datasource is required in the request body"); | ||
} | ||
|
||
// Convert message content from Vercel/AI format to LlamaIndex/OpenAI format | ||
|
||
const response = await chatEngine.chat({ | ||
message: "Evaluate the summary and create a Haikipu.", | ||
chatHistory: messages, | ||
}); | ||
console.log({ | ||
response, | ||
serviceContext, | ||
raw: response.response, | ||
firstNode: !!response.sourceNodes?.length && response.sourceNodes[0].hash, | ||
}); | ||
const usedEmbeddingIds = response.sourceNodes?.map(node => node.id_) || []; | ||
|
||
const parsedResponse = JSON.parse(response.response); | ||
|
||
const haikipu: Haikipu = { | ||
title: haikiput.title, | ||
id: haikiput.id, | ||
address: haikiput.address, | ||
timestamp: Date.now().toString(), | ||
type: haikiput.type, | ||
contextSummary: haikiput.contextSummary, | ||
haiku: parsedResponse.haiku, | ||
explainer: parsedResponse.explainer, | ||
}; | ||
|
||
return { haikipu, messages, usedEmbeddingIds }; | ||
} | ||
|
||
export const maxDuration = 120; // This function can run for a maximum of 5 seconds | ||
// Example usage for POST handler or another part of your application | ||
export async function hAIku(haikiput: Haikipu, systemPrompt: string, assistantPrompt?: string, userPrompt?: string) { | ||
console.log(haikiput); | ||
const { usedEmbeddingIds, messages, haikipu } = await generateHackathonProposal( | ||
haikiput, | ||
systemPrompt, | ||
assistantPrompt, | ||
userPrompt, | ||
); | ||
// Proceed with storing the enhanced proposal in MongoDB or returning it in the response | ||
// | ||
const db = client.db("nerdWorkState"); // Connect to the database | ||
const haikuCodex = db.collection("nerdHaikus"); // | ||
// assumed input | ||
// run this function asynchronously, do not block for it to finish | ||
runLlamaAndStore(db, usedEmbeddingIds, messages, haikipu); | ||
|
||
await haikuCodex.updateOne( | ||
{ | ||
id: haikipu.id, | ||
address: haikipu.address, | ||
haikipu, | ||
}, | ||
{ $setOnInsert: { haikipu: haikipu } }, | ||
{ upsert: true }, // this creates new document if none match the filter | ||
); | ||
// | ||
return haikipu; | ||
console.log(haikiput); | ||
const { usedEmbeddingIds, messages, haikipu } = await generateHackathonProposal( | ||
haikiput, | ||
systemPrompt, | ||
assistantPrompt, | ||
userPrompt, | ||
); | ||
// Proceed with storing the enhanced proposal in MongoDB or returning it in the response | ||
// | ||
const db = client.db("nerdWorkState"); // Connect to the database | ||
const haikuCodex = db.collection("nerdHaikus"); // | ||
// assumed input | ||
// run this function asynchronously, do not block for it to finish | ||
runLlamaAndStore(db, usedEmbeddingIds, messages, haikipu); | ||
|
||
await haikuCodex.updateOne( | ||
{ | ||
id: haikipu.id, | ||
address: haikipu.address, | ||
haikipu, | ||
}, | ||
{ $setOnInsert: { haikipu: haikipu } }, | ||
{ upsert: true }, // this creates new document if none match the filter | ||
); | ||
// | ||
return haikipu; | ||
} | ||
|
||
export const someVar = async (c: any, next: any) => { | ||
const test = {} as Haikipu | ||
const test = {} as Haikipu; | ||
|
||
console.log(c.body) | ||
const result = await hAIku(test, c.buttonValue, "", "") | ||
console.log(c.body); | ||
const result = await hAIku(test, c.buttonValue, "", ""); | ||
|
||
c._var.text = result.haiku | ||
await next() | ||
} | ||
c._var.text = result.haiku; | ||
await next(); | ||
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.