Skip to content

Commit

Permalink
Merge pull request #176 from NOAA-OWP/stac_client
Browse files Browse the repository at this point in the history
Stac Client IO and Documentation Changes
  • Loading branch information
fernando-aristizabal authored Dec 31, 2023
2 parents 0cb9654 + 0183a9c commit 2eeb8e1
Show file tree
Hide file tree
Showing 27 changed files with 1,246 additions and 153 deletions.
112 changes: 109 additions & 3 deletions README.MD
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,8 @@ Or for bleeding edge updates install from the repository:

# Using GVAL

### Categorical Example

An example of running the entire process for two-class categorical
rasters with one function using minimal arguments is demonstrated below:

Expand All @@ -55,7 +57,7 @@ benchmark = rxr.open_rasterio('benchmark_map_two_class_categorical.tif', mask_an
negative_categories=[0, 1])
```

### Outputs
#### Categorical Outputs

`agreement_map`

Expand All @@ -69,8 +71,112 @@ benchmark = rxr.open_rasterio('benchmark_map_two_class_categorical.tif', mask_an

![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/metric_table.png)

For more details on how to use this software, check out this [notebook
tutorial](https://github.com/NOAA-OWP/gval/blob/main/notebooks/Tutorial.ipynb).
### Continuous Example

The same can be done for rasters with continuous valued statistical data
types as shown below (in this case only a subset of the default
statistics will be run):

``` python
import gval
import rioxarray as rxr

candidate = rxr.open_rasterio('livneh_2011_precip.tif', mask_and_scale=True) # VIC
benchmark = rxr.open_rasterio('prism_2011_precip.tif', mask_and_scale=True) # PRISM

agreement, metric_table = candidate.gval.continuous_compare(
benchmark,
metrics=[
"coefficient_of_determination",
"mean_percentage_error",
"mean_absolute_percentage_error",
"mean_normalized_mean_absolute_error"
]
)
```

#### Continuous Outputs

`agreement_map`

![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/continuous_agreement_map.png)

`metric_table`

![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/continuous_metric_table.png)

### Catalog Example

Entire catalogs can be compared in GVAL, which are represented by
dataframes of maps. The following is a candidate and benchmark catalog
for continuous datasets:

`candidate_catalog`

![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/candidate_catalog.png)

`benchmark_catalog`

![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/benchmark_catalog.png)

With the following code a comparison of each pair of maps can be run
with the following code. Since the parameter `agreement_map_field` is
provided the column `agreement_maps` found in the candidate catalog will
be used to export the agreement map to that location. (Note the first
pair of candidate and benchmark maps are single band rasters while the
second pair are multiband rasters):

``` python
import pandas as pd

from gval.catalogs.catalogs import catalog_compare

candidate_continuous_catalog = pd.read_csv('candidate_catalog_0.csv')
benchmark_continuous_catalog = pd.read_csv('benchmark_catalog_0.csv')

arguments = {
"candidate_catalog": candidate_continuous_catalog,
"benchmark_catalog": benchmark_continuous_catalog,
"on": "compare_id",
"agreement_map_field": "agreement_maps",
"map_ids": "map_id",
"how": "inner",
"compare_type": "continuous",
"compare_kwargs": {
"metrics": (
"coefficient_of_determination",
"mean_absolute_error",
"mean_absolute_percentage_error",
),
"encode_nodata": True,
"nodata": -9999,
},
"open_kwargs": {
"mask_and_scale": True,
"masked": True
}
}

agreement_continuous_catalog = catalog_compare(**arguments)
```

#### Catalog Outputs

`agreement_map`

![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/catalog_agreement_map.png) ![alt
text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/catalog_agreement_map2.png)

`catalog_metrics`

![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/catalog_metric_table.png)

(Note that both catalog level attributes in the candidate and benchmark
catalogs are present in the catalog metrics table.)

For more detailed examples of how to use this software, check out these
[notebook
tutorials](https://github.com/NOAA-OWP/gval/blob/main/notebooks).

# Contributing

Expand Down
56 changes: 56 additions & 0 deletions docs/compile_readme_and_arrange_docs.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,62 @@ def compile_readme() -> None:
'width="700" height="180" />',
)

sphinx_contents = sphinx_contents.replace(
"![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/"
"continuous_agreement_map.png)",
'<img src="https://github.com/NOAA-OWP/gval/raw/main/docs/images/'
'continuous_agreement_map.png" '
'width="500" height="150" />',
)

sphinx_contents = sphinx_contents.replace(
"![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/"
"continuous_metric_table.png)",
'<img src="https://github.com/NOAA-OWP/gval/raw/main/docs/images/'
'continuous_metric_table.png" '
'width="700" height="180" />',
)

sphinx_contents = sphinx_contents.replace(
"![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/"
"candidate_catalog.png)",
'<img src="https://github.com/NOAA-OWP/gval/raw/main/docs/images/'
'candidate_catalog.png" '
'width="450" height="120" />',
)

sphinx_contents = sphinx_contents.replace(
"![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/"
"benchmark_catalog.png)",
'<img src="https://github.com/NOAA-OWP/gval/raw/main/docs/images/'
'benchmark_catalog.png" '
'width="350" height="120" />',
)

sphinx_contents = sphinx_contents.replace(
"![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/"
"catalog_agreement_map.png)",
'<img src="https://github.com/NOAA-OWP/gval/raw/main/docs/images/'
'catalog_agreement_map.png" '
'width="500" height="150" />',
)

sphinx_contents = sphinx_contents.replace(
"![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/"
"catalog_agreement_map2.png)",
'<img src="https://github.com/NOAA-OWP/gval/raw/main/docs/images/'
'catalog_agreement_map2.png" '
'width="700" height="180" />',
)

sphinx_contents = sphinx_contents.replace(
"![alt text](https://github.com/NOAA-OWP/gval/raw/main/docs/images/"
"catalog_metric_table.png)",
'<img src="https://github.com/NOAA-OWP/gval/raw/main/docs/images/'
'catalog_metric_table.png" '
'width="700" height="450" />',
)

sphinx_contents = sphinx_contents.replace(
"\nSee the full documentation [here](noaa-owp.github.io/gval/).\n", ""
)
Expand Down
Binary file added docs/images/benchmark_catalog.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/images/candidate_catalog.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/images/catalog_agreement_map.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/images/catalog_agreement_map2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/images/catalog_metric_table.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/images/continuous_agreement_map.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/images/continuous_metric_table.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
106 changes: 103 additions & 3 deletions docs/markdown/04_EXAMPLE.MD
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Using GVAL

### Categorical Example
An example of running the entire process for two-class categorical rasters with one function using minimal arguments is demonstrated below:

```python
Expand All @@ -16,7 +17,7 @@ benchmark = rxr.open_rasterio('benchmark_map_two_class_categorical.tif', mask_an
negative_categories=[0, 1])
```

### Outputs
#### Categorical Outputs

`agreement_map`

Expand All @@ -30,5 +31,104 @@ benchmark = rxr.open_rasterio('benchmark_map_two_class_categorical.tif', mask_an

![alt text](../images/metric_table.png)

For more details on how to use this software, check out this
[notebook tutorial](https://github.com/NOAA-OWP/gval/blob/main/notebooks/Tutorial.ipynb).
### Continuous Example

The same can be done for rasters with continuous valued statistical data types as shown below (in this case only a
subset of the default statistics will be run):

```python
import gval
import rioxarray as rxr

candidate = rxr.open_rasterio('livneh_2011_precip.tif', mask_and_scale=True) # VIC
benchmark = rxr.open_rasterio('prism_2011_precip.tif', mask_and_scale=True) # PRISM

agreement, metric_table = candidate.gval.continuous_compare(
benchmark,
metrics=[
"coefficient_of_determination",
"mean_percentage_error",
"mean_absolute_percentage_error",
"mean_normalized_mean_absolute_error"
]
)
```

#### Continuous Outputs

`agreement_map`

![alt text](../images/continuous_agreement_map.png)

`metric_table`

![alt text](../images/continuous_metric_table.png)

### Catalog Example

Entire catalogs can be compared in GVAL, which are represented by dataframes of maps. The following is a candidate
and benchmark catalog for continuous datasets:

`candidate_catalog`

![alt text](../images/candidate_catalog.png)

`benchmark_catalog`

![alt text](../images/benchmark_catalog.png)

With the following code a comparison of each pair of maps can be run with the following code. Since the parameter
`agreement_map_field` is provided the column `agreement_maps` found in the candidate catalog will be used to
export the agreement map to that location. (Note the first pair of
candidate and benchmark maps are single band rasters while the second pair are multiband rasters):

```python
import pandas as pd

from gval.catalogs.catalogs import catalog_compare

candidate_continuous_catalog = pd.read_csv('candidate_catalog_0.csv')
benchmark_continuous_catalog = pd.read_csv('benchmark_catalog_0.csv')

arguments = {
"candidate_catalog": candidate_continuous_catalog,
"benchmark_catalog": benchmark_continuous_catalog,
"on": "compare_id",
"agreement_map_field": "agreement_maps",
"map_ids": "map_id",
"how": "inner",
"compare_type": "continuous",
"compare_kwargs": {
"metrics": (
"coefficient_of_determination",
"mean_absolute_error",
"mean_absolute_percentage_error",
),
"encode_nodata": True,
"nodata": -9999,
},
"open_kwargs": {
"mask_and_scale": True,
"masked": True
}
}

agreement_continuous_catalog = catalog_compare(**arguments)
```

#### Catalog Outputs

`agreement_map`

![alt text](../images/catalog_agreement_map.png)
![alt text](../images/catalog_agreement_map2.png)

`catalog_metrics`

![alt text](../images/catalog_metric_table.png)

(Note that both catalog level attributes in the candidate and benchmark catalogs are present in the catalog metrics
table.)

For more detailed examples of how to use this software, check out these
[notebook tutorials](https://github.com/NOAA-OWP/gval/blob/main/notebooks).
Loading

0 comments on commit 2eeb8e1

Please sign in to comment.