-
Notifications
You must be signed in to change notification settings - Fork 64
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
utility script for making animations of forcing inputs #695
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
#!/usr/bin/env python | ||
""" | ||
@author Nels J. Frazier | ||
@date 01-02-2024 | ||
@version 0.0.0 | ||
|
||
Utility to generate animations in gif format in both gridded form | ||
and catchment aggregated form. Use forcing_animation --help for | ||
descriptions of options and required inputs. | ||
|
||
""" | ||
import geopandas as gpd | ||
import matplotlib.pyplot as plt | ||
#import PIL | ||
#PIL.Image.MAX_IMAGE_PIXELS = 188745354+10000 | ||
from matplotlib.animation import FuncAnimation, PillowWriter, FFMpegWriter | ||
import seaborn as sns | ||
import xarray as xr | ||
from functools import partial | ||
import cartopy.crs as ccrs | ||
import cartopy.feature as cfeature | ||
#import pickle | ||
import argparse | ||
from pyogrio import read_dataframe | ||
|
||
def plot_catchment_frame(ax, forecast, forcing, catchments, i): | ||
t = forcing[i] | ||
#each dataset is a slice of time | ||
ts = t.time.dt.strftime("%Y-%m-%d %H:%M:%S").item() | ||
ax.set_title(forecast+"\n"+ts+"\nPrecipitation", fontsize=20) | ||
#don't plot new, update old!!! | ||
ax.collections[0].set_array(t.values) | ||
print("Plotting time ", i) | ||
return ax | ||
|
||
from matplotlib.collections import QuadMesh | ||
def plot_grid_frame(ax, forecast, forcing, cmap, i): | ||
#Get time at int index i | ||
t = forcing['RAINRATE'][i:i+1] | ||
ts = t.time.dt.strftime("%Y-%m-%d %H:%M:%S").item() | ||
ax.axes.set_title(forecast+"\n"+ts+"\nPrecipitation", fontsize=20) | ||
#update | ||
ax.set_array(t[0].values) | ||
print("Plotting time ", i) | ||
return ax | ||
|
||
cycles = ["Short", "Medium", "Long"] | ||
sources = ['HRRR-RAP', 'CFS', 'GFS', 'Other'] | ||
|
||
parser = argparse.ArgumentParser() | ||
#TODO add cariable arg | ||
#TODO add cmap arg | ||
parser.add_argument('-p', '--preview', help="Plot the first frame and view only", required=False, action="store_true") | ||
parser.add_argument('-s', '--switch', help="switch the orientation of the colorbar from horizontal to vertical", required=False, action="store_true") | ||
parser.add_argument('-d', '--dpi', required=False, default=100, help="Resolution to save gif", type=int) | ||
parser.add_argument("source", choices=sources) | ||
parser.add_argument("cycle", choices=cycles) | ||
commands = parser.add_subparsers(dest="command") | ||
|
||
h_commands = commands.add_parser("hydrofabric") | ||
h_commands.add_argument('hydrofabric', metavar="hydrofabric geopackage", type=argparse.FileType('r')) | ||
h_commands.add_argument('data', metavar="netcdf precip", type=argparse.FileType('r')) | ||
|
||
g_commands = commands.add_parser("grid") | ||
g_commands.add_argument('data', metavar="gridded netcdf precip", type=argparse.FileType('r')) | ||
|
||
args = parser.parse_args() | ||
|
||
forecast = args.cycle+" Range "+args.source | ||
crs = '' | ||
epsg = '' | ||
if(args.command == 'hydrofabric'): | ||
epsg = '5070' | ||
crs = ccrs.epsg(epsg) | ||
crs = ccrs.PlateCarree() | ||
elif(args.command == 'grid'): | ||
epsg = '4326' | ||
# doesn't work: crs= ccrs.epsg('4326') | ||
crs = ccrs.PlateCarree() #NJF why this one??? | ||
|
||
forcing = xr.open_dataset(args.data.name, decode_cf=False) | ||
forcing.time.attrs['units'] = forcing.time.attrs['reference_time'] | ||
forcing = xr.decode_cf(forcing) | ||
|
||
###Setup general figure | ||
#cmap = sns.color_palette('flare', as_cmap=True) | ||
#Single hughe blue, really light on the 0 side... | ||
#cmap = sns.color_palette('Blues', as_cmap=True) | ||
#Little better constrast, still high desat on the low end | ||
cmap = sns.color_palette("light:b", as_cmap=True) | ||
#Reasonably good "blue ish" cube helix | ||
#cmap = sns.color_palette("ch:start=.2,rot=-.2", as_cmap=True) | ||
|
||
bkgrnd = sns.color_palette('flare', as_cmap=True) | ||
#cmap.set_under(bkgrnd(50), alpha=0.05) | ||
cmap.set_under("bisque", alpha=0.1) | ||
e_color = 'none' | ||
vmin = forcing['RAINRATE'].min().item() | ||
vmin = 0.0009 | ||
Comment on lines
+98
to
+99
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Another duplicate assignment |
||
vmax = forcing['RAINRATE'].max().item() | ||
|
||
fig = plt.figure(figsize=(19.20, 10.80), dpi=100) | ||
ax = plt.axes(projection=crs) | ||
#plt.suptitle("Short Range") | ||
if(args.switch): | ||
cax = fig.add_axes([0.9, 0.1, 0.03, 0.8]) #vertical | ||
orient = "vertical" | ||
else: | ||
cax = fig.add_axes([0.05, 0.05, 0.9, 0.03]) #horizontal | ||
orient = "horizontal" | ||
norm = plt.Normalize(vmin=vmin, vmax=vmax) | ||
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) | ||
# fake up the array of the scalar mappable. Urgh... | ||
sm._A = [] | ||
|
||
cbar = fig.colorbar(sm, cax=cax, orientation=orient) | ||
cbar.set_label(forcing['RAINRATE'].attrs['units']) | ||
#ax = fig.gca() | ||
ax.set_axis_off() | ||
ax.title.set_size(20) | ||
|
||
interval = 100 | ||
fps = 20 | ||
if(args.cycle == "Short"): | ||
interval = 5 | ||
fps = 10 | ||
|
||
if(args.command == "hydrofabric"): | ||
fs = forcing["catchment_ids"].to_series() | ||
print( fs[ fs.duplicated() ].values) | ||
# WAY faster reading with pyogrio and use_arrow (though just pyogrio is a significant imporvement!) | ||
catchments = gpd.read_file(args.hydrofabric.name, layer="divides", include_fields=['divide_id'], engine='pyogrio', use_arrow=True) | ||
# union = gpd.GeoSeries( catchments.unary_union, crs=catchments.crs) | ||
union = gpd.read_file("domain.gpkg", engine='pyogrio') | ||
|
||
print("Projecting domain to epsg:4326") | ||
union = union.to_crs(epsg='4326') | ||
catchments = catchments.to_crs(epsg='4326') | ||
|
||
forcing = forcing.set_index({"catchment ids":"catchment_ids"}).to_array().squeeze().drop_vars('variable') | ||
#Get the catchment geopandas index, strip to int for xarray index | ||
cat_ids = catchments['divide_id'].apply(lambda x: int(x.split("-")[1])) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Presumably true at the time of writing, but does the hydrofabric work guarantee unique numeric IDs of catchments across the various kinds that potentially prefix them? Actually, are there currently or plans for catchment IDs prefixed other than |
||
#This is one way to re-org the data along the geopandas index | ||
#forcing = forcing.loc[:, cat_ids.values] | ||
#But this should be much faster! | ||
#FIXME issues with duplicate ids in forcing files... | ||
forcing = forcing.drop_duplicates("catchment ids") | ||
forcing = forcing.reindex({"catchment ids":cat_ids.values}) | ||
# This was a good idea -- cache the axes, but won't work for general usage | ||
# and also just doesn't work to deserialize the GeoAxes from cartopy... | ||
# if( Path(".catchment_axes_caches").exists() ): | ||
# with open('.catchment_axes_caches', 'rb') as cache: | ||
# ax = pickle.load(cache) | ||
# else: | ||
# ax = catchments.plot(ax=ax, legend=False, edgecolor=e_color, facecolor='white') | ||
# with open('.catchment_axes_caches', 'wb') as cache: | ||
# pickle.dump(ax, cache) | ||
|
||
# epsg 5070 projected bounds: -7013714.59 967179.63 -5299735.56 2630462.94 | ||
# This cuts off florida and texas!!! For now, just reproject to wgs84 and plot | ||
# on the PlateCarree projection | ||
# might consider trying | ||
print("Plotting base...") | ||
ax.add_geometries( union.geometry, facecolor="none", edgecolor="black", crs=crs) | ||
#ax.set_extent( catchments.total_bounds, crs=crs ) | ||
box = catchments.total_bounds | ||
ax.set_xlim((box[0], box[2])) | ||
ax.set_ylim((box[1], box[3])) | ||
ax = catchments.plot(ax=ax, legend=False, edgecolor=e_color, facecolor='white', vmin=vmin, vmax=vmax, norm=norm) | ||
#FIXME try the union before projecting, then re-project the resulting geometry | ||
# Turns out, this fixes the topology error, but is slow, for now hacking in Mike's outline | ||
#ax.add_geometries( [catchments.unary_union], crs=crs, facecolor=None, edgecolor="black") | ||
ax.collections[0].set_cmap(cmap) | ||
ax.collections[0].set_clim(vmin, vmax) | ||
|
||
#ax.add_feature(cfeature.STATES.with_scale('50m')) | ||
if(args.preview): | ||
plot_catchment_frame(ax, forecast, forcing, cat_ids, 6) | ||
else: | ||
ani = FuncAnimation(fig, partial(plot_catchment_frame, ax, forecast, forcing, cat_ids), frames=forcing.coords['time'].size, interval=interval) | ||
elif(args.command == "grid"): | ||
ax.add_feature(cfeature.STATES.with_scale('110m')) | ||
ax = forcing['RAINRATE'].isel(time=0).plot(ax=ax, cmap=cmap, add_colorbar=False, vmin=vmin, vmax=vmax, norm=norm) | ||
# print(ax) | ||
#plt.show() | ||
# os._exit(1) | ||
#odr = cartopy.feature.NaturalEarthFeature(category='cultural', | ||
#name='admin_0_boundary_lines_land', scale='50m', facecolor='none', alpha=0.7) | ||
#ax.add_feature(odr) | ||
if(args.preview): | ||
plot_grid_frame( ax, forecast, forcing, cmap, 0) | ||
else: | ||
ani = FuncAnimation(fig, partial(plot_grid_frame, ax, forecast, forcing, cmap), frames=forcing.coords['time'].size, interval=interval) | ||
|
||
|
||
|
||
# catchments = gpd.read_file("gauge_01073000.gpkg", layer="divides", include_fields=['divide_id']) | ||
# forcing = xr.open_dataset("data/Long_Range_Hydrofabric_Precip.nc", decode_cf=False) | ||
|
||
# forecast="Short Range" #TODO add product (CFS, GFS ect...) | ||
# forecast="Long Range" #TODO add product (CFS, GFS ect...) | ||
|
||
|
||
print("NUM FRAMES") | ||
print(forcing.coords['time'].size) | ||
#plot_frame(ax, 224) | ||
|
||
#plt.show() | ||
|
||
#ani.save("forcings_"+forecast.replace(" ","_")+".gif", dpi=1200, writer=PillowWriter(fps=20)) | ||
#plt.tight_layout() | ||
#plt.subplots_adjust(top=0.85) | ||
if(args.preview): | ||
plt.show() | ||
else: | ||
#ani.save("forcings_"+forecast.replace(" ","_")+".mp4", writer=FFMpegWriter(fps=fps) ) | ||
ani.save(args.command+"_forcings_"+forecast.replace(" ","_")+".gif", writer="ffmpeg", dpi=args.dpi) | ||
plt.close() | ||
#plt.savefig("test.png", dpi=1200, bbox_inches='tight', | ||
# transparent=True, | ||
# pad_inches=0) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Which one is
crs
meant to be?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The pyproj 5070 epsg code enforces a projection boundary that clips off the southern part of the CONUS domain, so for now using the PlateCarree. See comment on line 160. I'll clean this up a bit, just wanted to get it published in some form.