-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
206 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <assert.h> | ||
|
||
#include <algorithm> | ||
#include <chrono> | ||
#include <cmath> | ||
#include <cstdio> | ||
#include <cstdlib> | ||
#include <iomanip> | ||
#include <iostream> | ||
#include <limits> | ||
#include <random> | ||
#include <string> | ||
#include <thread> | ||
#include <unordered_map> | ||
#include <unordered_set> | ||
|
||
#include "benchmark_util.cuh" | ||
#include "merlin_hashtable.cuh" | ||
|
||
using K = uint64_t; | ||
using V = float; | ||
using S = uint64_t; | ||
using EvictStrategy = nv::merlin::EvictStrategy; | ||
using TableOptions = nv::merlin::HashTableOptions; | ||
using Table = nv::merlin::HashTable<K, V, S, EvictStrategy::kCustomized>; | ||
|
||
void print_tile() { | ||
std::cout << std::endl | ||
<< "| \u03BB " | ||
<< "| capacity " | ||
<< "| max_hbm_for_vectors " | ||
<< "| max_bucket_size " | ||
<< "| dim " | ||
<< "| missed_ratio " | ||
<< "| througput(BillionKV/secs) "; | ||
std::cout << "|\n"; | ||
|
||
//<< "| load_factor " | ||
std::cout << "|------" | ||
//<< "| capacity " | ||
<< "|----------" | ||
//<< "| max_hbm_for_vectors " | ||
<< "|---------------------" | ||
//<< "| max_bucket_size " | ||
<< "|-----------------" | ||
//<< "| dim " | ||
<< "|-----" | ||
//<< "| missed_ratio " | ||
<< "|--------------" | ||
//<< "| througput(BillionKV/secs) " | ||
<< "|---------------------------"; | ||
std::cout << "|\n"; | ||
} | ||
|
||
template <typename T> | ||
void print_w(const T& t, size_t width) { | ||
std::cout << "|" << std::setw(width) << t; | ||
} | ||
|
||
void print_result(double load_factor, size_t capacity, | ||
size_t max_hbm_for_vectors, size_t max_bucket_size, | ||
size_t dim, double missed_ratio, float througput) { | ||
print_w(load_factor, 6); | ||
print_w(capacity, 10); | ||
print_w(max_hbm_for_vectors, 21); | ||
print_w(max_bucket_size, 17); | ||
print_w(dim, 5); | ||
print_w(missed_ratio, 14); | ||
print_w(througput, 27); | ||
std::cout << "|\n"; | ||
} | ||
|
||
void test_find(size_t capacity, size_t dim, size_t max_hbm_for_vectors, | ||
double load_factor, size_t max_bucket_size, | ||
double missed_ratio) { | ||
MERLIN_CHECK(load_factor >= 0.0 && load_factor <= 1.0, | ||
"Invalid `load_factor`"); | ||
K* h_keys; | ||
S* h_scores; | ||
V* h_vectors; | ||
|
||
TableOptions options; | ||
options.init_capacity = capacity; | ||
options.max_capacity = capacity; | ||
options.dim = dim; | ||
|
||
options.max_hbm_for_vectors = nv::merlin::MB(max_hbm_for_vectors); | ||
options.max_bucket_size = max_bucket_size; | ||
|
||
size_t key_num = capacity; | ||
CUDA_CHECK(cudaMallocHost(&h_keys, key_num * sizeof(K))); | ||
CUDA_CHECK(cudaMallocHost(&h_scores, key_num * sizeof(S))); | ||
CUDA_CHECK(cudaMallocHost(&h_vectors, key_num * options.dim * sizeof(V))); | ||
|
||
K* d_keys; | ||
S* d_scores; | ||
V* d_vectors; | ||
K* d_missed_keys; | ||
int* d_missed_indices; | ||
int* d_missed_size; | ||
|
||
CUDA_CHECK(cudaMalloc(&d_keys, key_num * sizeof(K))); | ||
CUDA_CHECK(cudaMalloc(&d_scores, key_num * sizeof(S))); | ||
CUDA_CHECK(cudaMalloc(&d_vectors, key_num * sizeof(V) * options.dim)); | ||
CUDA_CHECK(cudaMalloc(&d_missed_keys, key_num * sizeof(K))); | ||
CUDA_CHECK(cudaMalloc(&d_missed_indices, key_num * sizeof(int))); | ||
CUDA_CHECK(cudaMalloc(&d_missed_size, sizeof(int))); | ||
|
||
cudaStream_t stream; | ||
CUDA_CHECK(cudaStreamCreate(&stream)); | ||
// insert key-value | ||
size_t insert_num = (double)key_num * load_factor; | ||
benchmark::create_continuous_keys<K, S>(h_keys, h_scores, insert_num, | ||
0 /*start*/); | ||
benchmark::init_value_using_key<K, V>(h_keys, h_vectors, insert_num, | ||
options.dim); | ||
CUDA_CHECK(cudaMemcpy(d_keys, h_keys, insert_num * sizeof(K), | ||
cudaMemcpyHostToDevice)); | ||
CUDA_CHECK(cudaMemcpy(d_scores, h_scores, insert_num * sizeof(S), | ||
cudaMemcpyHostToDevice)); | ||
CUDA_CHECK(cudaMemcpy(d_vectors, h_vectors, | ||
insert_num * sizeof(V) * options.dim, | ||
cudaMemcpyHostToDevice)); | ||
Table table; | ||
table.init(options); | ||
table.insert_or_assign(insert_num, d_keys, d_vectors, d_scores, stream); | ||
CUDA_CHECK(cudaStreamSynchronize(stream)); | ||
|
||
// find key-value | ||
size_t find_num = (double)insert_num * (1.0 - missed_ratio); | ||
benchmark::create_continuous_keys<K, S>(h_keys, nullptr, find_num, | ||
0 /*start*/); | ||
benchmark::create_continuous_keys<K, S>( | ||
h_keys + find_num, nullptr, insert_num - find_num, insert_num /*start*/); | ||
CUDA_CHECK(cudaMemcpy(d_keys, h_keys, insert_num * sizeof(K), | ||
cudaMemcpyHostToDevice)); | ||
|
||
auto timer = benchmark::Timer<double>(); | ||
timer.start(); | ||
table.find(insert_num, d_keys, d_vectors, d_missed_keys, d_missed_indices, | ||
d_missed_size, d_scores, stream); | ||
CUDA_CHECK(cudaStreamSynchronize(stream)); | ||
timer.end(); | ||
|
||
CUDA_CHECK(cudaFreeHost(h_keys)); | ||
CUDA_CHECK(cudaFreeHost(h_scores)); | ||
CUDA_CHECK(cudaFreeHost(h_vectors)); | ||
CUDA_CHECK(cudaFree(d_keys)); | ||
CUDA_CHECK(cudaFree(d_scores)); | ||
CUDA_CHECK(cudaFree(d_vectors)); | ||
CUDA_CHECK(cudaFree(d_missed_keys)); | ||
CUDA_CHECK(cudaFree(d_missed_indices)); | ||
CUDA_CHECK(cudaFree(d_missed_size)); | ||
|
||
CudaCheckError(); | ||
float througput = insert_num / timer.getResult() / (1024 * 1024 * 1024.0f); | ||
print_result(load_factor, capacity, max_hbm_for_vectors, max_bucket_size, dim, | ||
missed_ratio, througput); | ||
} | ||
|
||
void test_main(double load_factor, double missed_ratio) { | ||
constexpr size_t CAPACITY = 100000000UL; | ||
print_tile(); | ||
// pure HBM | ||
test_find(CAPACITY, 8, 8 * 1024UL, load_factor, 256, missed_ratio); | ||
test_find(CAPACITY, 8, 8 * 1024UL, load_factor, 128, missed_ratio); | ||
// hybrid | ||
test_find(CAPACITY, 8, 1 * 1024UL, load_factor, 256, missed_ratio); | ||
test_find(CAPACITY, 8, 1 * 1024UL, load_factor, 128, missed_ratio); | ||
// pure HMEM | ||
test_find(CAPACITY, 8, 0, load_factor, 256, missed_ratio); | ||
test_find(CAPACITY, 8, 0, load_factor, 128, missed_ratio); | ||
} | ||
|
||
int main() { | ||
test_main(0.2, 0); | ||
test_main(0.2, 0.5); | ||
test_main(0.2, 1.0); | ||
test_main(0.5, 0); | ||
test_main(0.5, 0.5); | ||
test_main(0.5, 1.0); | ||
test_main(1.0, 0); | ||
test_main(1.0, 0.5); | ||
test_main(1.0, 1.0); | ||
return 0; | ||
} |