Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add docstrings #1110

Merged
merged 15 commits into from
Jun 12, 2023
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 45 additions & 42 deletions merlin/models/tf/blocks/dlrm.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,52 +34,55 @@ def DLRMBlock(
*,
embedding_dim: int = None,
embedding_options: EmbeddingOptions = None,
embeddings: Optional[Block] = None,
bottom_block: Optional[Block] = None,
top_block: Optional[Block] = None,
embeddings: Optional[Block] = None,
) -> SequentialBlock:
"""Builds the DLRM architecture, as proposed in the following
`paper https://arxiv.org/pdf/1906.00091.pdf`_ [1]_.

References
----------
.. [1] Naumov, Maxim, et al. "Deep learning recommendation model for
personalization and recommendation systems." arXiv preprint arXiv:1906.00091 (2019).

Parameters
----------
schema : Schema
The `Schema` with the input features
bottom_block : Block
The `Block` that combines the continuous features (typically a `MLPBlock`)
top_block : Optional[Block], optional
The optional `Block` that combines the outputs of bottom layer and of
the factorization machine layer, by default None
embedding_dim : Optional[int], optional
Dimension of the embeddings, by default None
embedding_options : EmbeddingOptions
Options for the input embeddings.
- embedding_dim_default: int - Default dimension of the embedding
table, when the feature is not found in ``embedding_dims``, by default 64
- infer_embedding_sizes : bool, Automatically defines the embedding
dimension from the feature cardinality in the schema, by default False,
which needs to be kept False for the DLRM architecture.

Returns
-------
SequentialBlock
The DLRM block

Raises
------
ValueError
The schema is required by DLRM
ValueError
The bottom_block is required by DLRM
ValueError
The embedding_dim (X) needs to match the last layer of bottom MLP (Y).
ValueError
Only one-of `embeddings` or `embedding_options` can be used.
`paper https://arxiv.org/pdf/1906.00091.pdf`_ [1]_.

References
----------
.. [1] Naumov, Maxim, et al. "Deep learning recommendation model for
personalization and recommendation systems." arXiv preprint arXiv:1906.00091 (2019).

Parameters
----------
schema : Schema
The `Schema` with the input features
embedding_dim : Optional[int], optional
Dimension of the embeddings, by default None
embedding_options : EmbeddingOptions
Options for the input embeddings.
- embedding_dim_default: int - Default dimension of the embedding
table, when the feature is not found in ``embedding_dims``, by default 64
- infer_embedding_sizes : bool, Automatically defines the embedding
dimension from the feature cardinality in the schema, by default False,
which needs to be kept False for the DLRM architecture.
embeddings: Optional[Block]
If provided creates a ParallelBlock with an EmbeddingTable for each
categorical feature in the schema.
bottom_block : Block
The `Block` that combines the continuous features (typically a `MLPBlock`)
top_block : Optional[Block], optional
The optional `Block` that combines the outputs of bottom layer and of
the factorization machine layer, by default None

Returns
-------
SequentialBlock
The DLRM block

Raises
------
ValueError
The schema is required by DLRM
ValueError
The bottom_block is required by DLRM
ValueError
The embedding_dim (X) needs to match the last layer of bottom MLP (Y).
ValueError
Only one-of `embeddings` or `embedding_options` can be used.
"""
if schema is None:
raise ValueError("The schema is required by DLRM")
Expand Down
12 changes: 12 additions & 0 deletions merlin/models/tf/blocks/interaction.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,18 @@ def call(self, inputs: tf.Tensor, **kwargs) -> tf.Tensor:
return 0.5 * tf.subtract(summed_square, squared_sum)

def compute_output_shape(self, input_shapes):
"""Computes the output shape based on the input shapes

Parameters
----------
input_shapes : tf.TensorShape
The input shapes

Returns
-------
tf.TensorShape
The output shape
"""
if len(input_shapes) != 3:
raise ValueError("Found shape {} without 3 dimensions".format(input_shapes))
return (input_shapes[0], input_shapes[2])
Expand Down
31 changes: 31 additions & 0 deletions merlin/models/tf/blocks/mlp.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,37 @@ def __init__(
dense=None,
**kwargs,
):
"""A Dense layer that aggregates features before projection
Parameters
----------
units : _type_
_description_
activation : Optional[Union[str,tf.keras.layers.Layer]], optional
The activation function to use. By default None
use_bias : bool, optional
Whether to use a bias in the MLP, by default True
kernel_initializer: InitializerType
Initializer for the kernel weights matrix. Defaults to "glorot_uniform".
bias_initializer: InitializerType
Initializer for the bias vector. Default to "zeros".
kernel_regularizer: Optional[RegularizerType]
Regularizer function applied to the kernel weights matrix. Default to None.
bias_regularizer: Optional[RegularizerType]
Regularizer function applied to the bias vector. Default to None.
activity_regularizer : optional
Regularizer function applied to the output of the layer (its "activation"),
by default None
kernel_constraint : optional
Constraint function applied to the kernel weights matrix, by default None
bias_constraint : optional
Constraint function applied to the bias vector, by default None
pre_aggregation : str, optional
If provided, aggregates inputs before the dense projection, by default "concat"
dense : _type_, optional
A tf.keras.layers.Layer that can be used to project the inputs.
Typically used when deserializing the layer. By default None
"""

super(_Dense, self).__init__(**kwargs)
self.dense = dense or tf.keras.layers.Dense(
units,
Expand Down
45 changes: 42 additions & 3 deletions merlin/models/tf/blocks/retrieval/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,14 +135,15 @@ class ItemRetrievalScorer(Block):
"""Block for ItemRetrieval, which expects query/user and item embeddings as input and
uses dot product to score the positive item (inputs["item"]) and also sampled negative
items (during training).

Parameters
----------
samplers : List[ItemSampler], optional
samplers: List[ItemSampler], optional
List of item samplers that provide negative samples when `training=True`
sampling_downscore_false_negatives : bool, optional
sampling_downscore_false_negatives: bool, optional
Identify false negatives (sampled item ids equal to the positive item and downscore them
to the `sampling_downscore_false_negatives_value`), by default True
sampling_downscore_false_negatives_value : int, optional
sampling_downscore_false_negatives_value: int, optional
Value to be used to downscore false negatives when
`sampling_downscore_false_negatives=True`, by default `np.finfo(np.float32).min / 100.0`
item_id_feature_name: str
Expand Down Expand Up @@ -174,6 +175,7 @@ def __init__(
store_negative_ids: bool = False,
**kwargs,
):
"""Initializes the `ItemRetrievalScorer` class."""
super().__init__(**kwargs)

self.downscore_false_negatives = sampling_downscore_false_negatives
Expand All @@ -193,6 +195,13 @@ def __init__(
self.set_required_features()

def build(self, input_shapes):
"""Builds the block.

Parameters
----------
input_shapes: tuple or dict
Shape of the input tensor.
"""
if isinstance(input_shapes, dict):
query_shape = input_shapes[self.query_name]
self.context.add_weight(
Expand All @@ -206,6 +215,13 @@ def build(self, input_shapes):
super().build(input_shapes)

def _check_input_from_two_tower(self, inputs):
"""Checks if the inputs from the two towers (query and item) are correctly provided.

Parameters
----------
inputs: dict
Dictionary of inputs.
"""
if set(inputs.keys()) != set([self.query_name, self.item_name]):
raise ValueError(
f"Wrong input-names, expected: {[self.query_name, self.item_name]} "
Expand All @@ -223,13 +239,15 @@ def call(
the positive item (inputs["item"]).
For the sampled-softmax mode, logits are computed by multiplying the query vector
and the item embeddings matrix (self.context.get_embedding(self.item_domain))

Parameters
----------
inputs : Union[tf.Tensor, TabularData]
Dict with the query and item embeddings (e.g. `{"query": <emb>}, "item": <emb>}`),
where embeddings are 2D tensors (batch size, embedding size)
training : bool, optional
Flag that indicates whether in training mode, by default True

Returns
-------
tf.Tensor
Expand Down Expand Up @@ -273,13 +291,15 @@ def call_outputs(
) -> "PredictionOutput":
"""Based on the user/query embedding (inputs[self.query_name]), uses dot product to score
the positive item and also sampled negative items (during training).

Parameters
----------
inputs : TabularData
Dict with the query and item embeddings (e.g. `{"query": <emb>}, "item": <emb>}`),
where embeddings are 2D tensors (batch size, embedding size)
training : bool, optional
Flag that indicates whether in training mode, by default True

Returns
-------
[tf.Tensor,tf.Tensor]
Expand Down Expand Up @@ -431,6 +451,7 @@ def _prepare_query_item_vectors_for_sampled_softmax(
return predictions

def set_required_features(self):
"""Sets the required features for the samplers."""
required_features = set()
if self.downscore_false_negatives:
required_features.add(self.item_id_feature_name)
Expand All @@ -442,6 +463,13 @@ def set_required_features(self):
self._required_features = list(required_features)

def get_config(self):
"""Returns the configuration of the model as a dictionary.

Returns
-------
dict
The configuration of the model.
"""
config = super().get_config()
config = maybe_serialize_keras_objects(self, config, ["samplers"])
config["sampling_downscore_false_negatives"] = self.downscore_false_negatives
Expand All @@ -458,6 +486,17 @@ def get_config(self):

@classmethod
def from_config(cls, config):
"""Creates a new instance of the class from its config.

Parameters
----------
config: dict
A dictionary, typically the output of get_config.

Returns
-------
A new instance of the `ItemRetrievalScorer` class.
"""
config = maybe_deserialize_keras_objects(config, ["samplers"])

return super().from_config(config)
5 changes: 5 additions & 0 deletions merlin/models/tf/core/combinators.py
Original file line number Diff line number Diff line change
Expand Up @@ -702,6 +702,11 @@ def from_config(cls, config, **kwargs):

@tf.keras.utils.register_keras_serializable(package="merlin.models")
class ResidualBlock(WithShortcut):
"""
Creates a shortcut connection where the residuals are
summed to the output of the block
"""

def __init__(
self,
block: Union[tf.keras.layers.Layer, Block],
Expand Down
Loading