-
Notifications
You must be signed in to change notification settings - Fork 108
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Tutorials] Add a tutorial for PEFT data curation (#45)
This PR adds a new tutorial to demonstrate data curation for PEFT use-cases. Signed-off-by: Mehran Maghoumi <[email protected]>
- Loading branch information
Showing
7 changed files
with
432 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# Curating Datasets for Parameter Efficient Fine-tuning | ||
|
||
This tutorial demonstrates the usage of NeMo Curator's Python API to curate a dataset for | ||
parameter-efficient fine-tuning (PEFT). | ||
|
||
In this tutorial, we use the [Enron Emails dataset](https://huggingface.co/datasets/neelblabla/enron_labeled_emails_with_subjects-llama2-7b_finetuning), | ||
which is a dataset of emails with corresponding classification labels for each email. Each email has | ||
a subject, a body and a category (class label). We demonstrate various filtering and processing | ||
operations that can be applied to each record. | ||
|
||
## Usage | ||
After installing the NeMo Curator package, you can simply run the following command: | ||
``` | ||
python tutorials/peft-curation/main.py | ||
``` | ||
|
||
By default, this tutorial will use at most 8 workers to run the curation pipeline. If you face any | ||
out of memory issues, you can reduce the number of workers by supplying the `--n-workers=N` argument, | ||
where `N` is the number of workers to spawn. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import re | ||
from typing import Dict | ||
|
||
import requests | ||
|
||
from nemo_curator.download.doc_builder import ( | ||
DocumentDownloader, | ||
DocumentExtractor, | ||
DocumentIterator, | ||
) | ||
|
||
|
||
class EmailsDownloader(DocumentDownloader): | ||
def __init__(self, download_dir: str): | ||
super().__init__() | ||
|
||
if not os.path.isdir(download_dir): | ||
os.makedirs(download_dir) | ||
|
||
self._download_dir = download_dir | ||
print("Download directory: ", self._download_dir) | ||
|
||
def download(self, url: str) -> str: | ||
filename = os.path.basename(url) | ||
output_file = os.path.join(self._download_dir, filename) | ||
|
||
if os.path.exists(output_file): | ||
print(f"File '{output_file}' already exists, skipping download.") | ||
return output_file | ||
|
||
print(f"Downloading Enron emails dataset from '{url}'...") | ||
response = requests.get(url) | ||
|
||
with open(output_file, "wb") as file: | ||
file.write(response.content) | ||
|
||
return output_file | ||
|
||
|
||
class EmailsIterator(DocumentIterator): | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self._counter = -1 | ||
self._extractor = EmailsExtractor() | ||
# The regular expression pattern to extract each email. | ||
self._pattern = re.compile(r"\"<s>.*?<s>\"", re.DOTALL) | ||
|
||
def iterate(self, file_path): | ||
self._counter = -1 | ||
file_name = os.path.basename(file_path) | ||
|
||
with open(file_path, "r", encoding="utf-8") as file: | ||
lines = file.readlines() | ||
|
||
# Ignore the first line which contains the header. | ||
file_content = "".join(lines[1:]) | ||
# Find all the emails in the file. | ||
it = self._pattern.finditer(file_content) | ||
|
||
for email in it: | ||
self._counter += 1 | ||
content = email.group().strip('"').strip() | ||
meta = { | ||
"filename": file_name, | ||
"id": f"email-{self._counter}", | ||
} | ||
extracted_content = self._extractor.extract(content) | ||
|
||
# Skip if no content extracted | ||
if not extracted_content: | ||
continue | ||
|
||
record = {**meta, **extracted_content} | ||
yield record | ||
|
||
|
||
class EmailsExtractor(DocumentExtractor): | ||
def __init__(self): | ||
super().__init__() | ||
# The regular expression pattern to extract subject/body/label into groups. | ||
self._pattern = re.compile( | ||
r"Subject:: (.*?)\nBody:: (.*?)\n.*\[/INST\] (.*?) <s>", re.DOTALL | ||
) | ||
|
||
def extract(self, content: str) -> Dict[str, str]: | ||
matches = self._pattern.findall(content) | ||
|
||
if not matches: | ||
return None | ||
|
||
matches = matches[0] | ||
|
||
return { | ||
"subject": matches[0].strip(), | ||
"body": matches[1].strip(), | ||
"category": matches[2].strip(), | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from nemo_curator.filters import DocumentFilter | ||
|
||
|
||
class FilterEmailsWithLongBody(DocumentFilter): | ||
""" | ||
If the email is too long, discard. | ||
""" | ||
|
||
def __init__(self, max_length: int = 5000): | ||
super().__init__() | ||
self.max_length = max_length | ||
|
||
def score_document(self, text: str) -> bool: | ||
return len(text) <= self.max_length | ||
|
||
def keep_document(self, score) -> bool: | ||
return score | ||
|
||
|
||
class FilterEmptyEmails(DocumentFilter): | ||
""" | ||
Detects empty emails (either empty body, or labeled as empty). Returns `True` for empty emails. | ||
""" | ||
|
||
def score_document(self, text: str) -> bool: | ||
return ( | ||
not isinstance(text, str) # The text is not a string | ||
or len(text.strip()) == 0 # The text is empty | ||
or "Empty message" in text # The email is labeled as empty | ||
) | ||
|
||
def keep_document(self, score) -> bool: | ||
return score |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import json | ||
import os | ||
from functools import partial | ||
from typing import Any | ||
|
||
from docbuilder import EmailsDownloader, EmailsIterator | ||
from filters import FilterEmailsWithLongBody, FilterEmptyEmails | ||
from modifiers import AddPeriod, AddSystemPrompt | ||
|
||
from nemo_curator import ScoreFilter, Sequential | ||
from nemo_curator.datasets import DocumentDataset | ||
from nemo_curator.modifiers.pii_modifier import PiiModifier | ||
from nemo_curator.modifiers.unicode_reformatter import UnicodeReformatter | ||
from nemo_curator.modules.modify import Modify | ||
from nemo_curator.utils.distributed_utils import get_client | ||
from nemo_curator.utils.script_utils import add_distributed_args | ||
|
||
SCRIPT_DIR_PATH = os.path.dirname(os.path.abspath(__file__)) | ||
DATA_DIR = os.path.join(SCRIPT_DIR_PATH, "data") | ||
DATASET_URL = "https://huggingface.co/datasets/neelblabla/enron_labeled_emails_with_subjects-llama2-7b_finetuning/raw/main/prompts_train.csv" | ||
|
||
|
||
def download_and_convert_to_jsonl() -> str: | ||
""" | ||
Downloads the emails dataset and converts it to JSONL format. | ||
Returns: | ||
str: The path to the JSONL file. | ||
""" | ||
|
||
# Download the dataset in raw format and convert it to JSONL. | ||
downloader = EmailsDownloader(DATA_DIR) | ||
output_path = os.path.join(DATA_DIR, "emails.jsonl") | ||
raw_fp = downloader.download(DATASET_URL) | ||
|
||
iterator = EmailsIterator() | ||
|
||
# Parse the raw data and write it to a JSONL file. | ||
with open(output_path, "w") as f: | ||
for record in iterator.iterate(raw_fp): | ||
json_record = json.dumps(record, ensure_ascii=False) | ||
f.write(json_record + "\n") | ||
|
||
return output_path | ||
|
||
|
||
def redact_pii(dataset: DocumentDataset, text_field) -> DocumentDataset: | ||
""" | ||
Redacts personally identifiable information (PII) from a given dataset. | ||
Args: | ||
dataset (DocumentDataset): The dataset containing documents with PII. | ||
Returns: | ||
DocumentDataset: The redacted dataset with PII replaced by a generic value. | ||
""" | ||
redactor = Modify( | ||
PiiModifier( | ||
supported_entities=[ | ||
"ADDRESS", | ||
"EMAIL_ADDRESS", | ||
"LOCATION", | ||
"PERSON", | ||
"URL", | ||
"PHONE_NUMBER", | ||
], | ||
anonymize_action="replace", | ||
device="cpu", | ||
), | ||
text_field=text_field, | ||
) | ||
return redactor(dataset) | ||
|
||
|
||
def run_curation_pipeline(args: Any, jsonl_fp: str) -> str: | ||
""" | ||
Run the curation pipeline on the dataset. | ||
Args: | ||
args (Any): Command-line arguments. | ||
jsonl_fp (str): The path to the uncurated JSONL file. | ||
Returns: | ||
str: The path to the curated JSONL file. | ||
""" | ||
client = get_client(args, args.device) | ||
print(f" Running the curation pipeline on '{jsonl_fp}'...") | ||
orig_dataset = DocumentDataset.read_json(jsonl_fp, add_filename=True) | ||
dataset = orig_dataset | ||
|
||
redact_pii_subject = partial(redact_pii, text_field="subject") | ||
redact_pii_body = partial(redact_pii, text_field="body") | ||
|
||
curation_steps = Sequential( | ||
[ | ||
# | ||
# Unify the text encoding to Unicode. | ||
# | ||
Modify(UnicodeReformatter(), text_field="subject"), | ||
Modify(UnicodeReformatter(), text_field="body"), | ||
Modify(UnicodeReformatter(), text_field="category"), | ||
# | ||
# Filtering | ||
# | ||
# Filter out empty emails. | ||
ScoreFilter( | ||
FilterEmptyEmails(), text_field="subject", score_type=bool, invert=True | ||
), | ||
ScoreFilter( | ||
FilterEmptyEmails(), text_field="body", score_type=bool, invert=True | ||
), | ||
ScoreFilter( | ||
FilterEmptyEmails(), text_field="category", score_type=bool, invert=True | ||
), | ||
# Filter out emails that are too long. | ||
ScoreFilter(FilterEmailsWithLongBody(), text_field="body", score_type=bool), | ||
# | ||
# Redact personally identifiable information (PII). | ||
# | ||
redact_pii_subject, | ||
redact_pii_body, | ||
# | ||
# Final modifications. | ||
# | ||
# Add system prompts to every email, which helps the model focus on the task. | ||
Modify(AddSystemPrompt(), text_field="body"), | ||
# Add a period to the end of each email category, which makes PEFT easier. | ||
Modify(AddPeriod(), text_field="category"), | ||
] | ||
) | ||
|
||
dataset = curation_steps(dataset) | ||
dataset = dataset.persist() | ||
|
||
print(f" Original dataset length: {len(orig_dataset.df)}") | ||
print(f" After running the curation pipeline: {len(dataset.df)}") | ||
print(f" Writing to '{jsonl_fp}'...") | ||
out_path = os.path.join( | ||
os.path.dirname(jsonl_fp), | ||
"curated", | ||
) | ||
os.makedirs(out_path, exist_ok=True) | ||
dataset.to_json(out_path, write_to_filename=True) | ||
client.close() | ||
return os.path.join(out_path, os.path.basename(jsonl_fp)) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser = add_distributed_args(parser) | ||
args = parser.parse_args() | ||
# Limit the total number of workers to ensure we don't run out of memory. | ||
args.n_workers = min(args.n_workers, 8) | ||
|
||
# Prepare the download and JSONL directories. | ||
if not os.path.isdir(DATA_DIR): | ||
os.makedirs(DATA_DIR) | ||
|
||
jsonl_fp = download_and_convert_to_jsonl() | ||
run_curation_pipeline(args, jsonl_fp) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.