-
Notifications
You must be signed in to change notification settings - Fork 99
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Ryan Wolf <[email protected]>
- Loading branch information
Showing
2 changed files
with
119 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
|
||
import nemo_curator as nc | ||
from nemo_curator.datasets import DocumentDataset | ||
from nemo_curator.utils.distributed_utils import get_client | ||
from nemo_curator.utils.script_utils import add_distributed_args | ||
|
||
|
||
def main(args): | ||
# Params | ||
dataset_paths = ["/path/to/first", "/path/to/second", "/path/to/third"] | ||
dataset_weights = [5.0, 2.0, 1.0] | ||
target_size = 1000 | ||
output_path = "/path/to/output" | ||
|
||
# Set up Dask client | ||
client = get_client(args, args.device) | ||
|
||
# Blend the datasets | ||
datasets = [DocumentDataset.read_json(path) for path in dataset_paths] | ||
blended_dataset = nc.blend_datasets(target_size, datasets, dataset_weights) | ||
|
||
shuffle = nc.Shuffle(seed=42) | ||
blended_dataset = shuffle(blended_dataset) | ||
|
||
# Save the blend | ||
blended_dataset.to_json(output_path) | ||
|
||
|
||
def attach_args( | ||
parser=argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
), | ||
): | ||
return add_distributed_args(parser) | ||
|
||
|
||
if __name__ == "__main__": | ||
main(attach_args().parse_args()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import dask.dataframe as dd | ||
import pandas as pd | ||
from dask.dataframe.utils import assert_eq | ||
|
||
import nemo_curator as nc | ||
from nemo_curator.datasets import DocumentDataset | ||
|
||
|
||
def list_to_dataset(documents, col_name="text", npartitions=2): | ||
data = {col_name: documents} | ||
pdf = pd.DataFrame(data) | ||
|
||
return DocumentDataset(dd.from_pandas(pdf, npartitions=npartitions)) | ||
|
||
|
||
class TestShuffling: | ||
def test_shuffle(self): | ||
original_dataset = list_to_dataset(["one", "two", "three"]) | ||
expected_dataset = list_to_dataset(["one", "two", "three"]) | ||
shuffle = nc.Shuffle(seed=42) | ||
result_dataset = shuffle(original_dataset) | ||
assert_eq(expected_dataset.df, result_dataset.df) | ||
|
||
def test_new_partitions(self): | ||
original_dataset = list_to_dataset(["one", "two", "three"], npartitions=3) | ||
expected_dataset = list_to_dataset(["one", "two", "three"]) | ||
shuffle = nc.Shuffle(seed=42, npartitions=2) | ||
result_dataset = shuffle(original_dataset) | ||
assert_eq(expected_dataset.df, result_dataset.df) | ||
|
||
def test_filename(self): | ||
original_dataset = list_to_dataset(["one", "two", "three"], npartitions=1) | ||
original_dataset.df["filename"] = "original.jsonl" | ||
|
||
expected_data = { | ||
"text": ["one", "two", "three"], | ||
"filename": [ | ||
"file_0000000001.jsonl", | ||
"file_0000000001.jsonl", | ||
"file_0000000002.jsonl", | ||
], | ||
} | ||
pdf = pd.DataFrame(expected_data) | ||
expected_dataset = DocumentDataset(dd.from_pandas(pdf, npartitions=2)) | ||
|
||
shuffle = nc.Shuffle(seed=42, npartitions=2) | ||
result_dataset = shuffle(original_dataset) | ||
assert_eq(expected_dataset.df, result_dataset.df) | ||
|
||
def test_custom_filenames(self): | ||
original_dataset = list_to_dataset(["one", "two", "three"], npartitions=1) | ||
original_dataset.df["filename"] = "original.jsonl" | ||
|
||
expected_data = { | ||
"text": ["one", "two", "three"], | ||
"filename": ["my_1.test", "my_1.test", "my_2.test"], | ||
} | ||
pdf = pd.DataFrame(expected_data) | ||
expected_dataset = DocumentDataset(dd.from_pandas(pdf, npartitions=2)) | ||
|
||
def filename_fn(x): | ||
return f"my_{x}.test" | ||
|
||
shuffle = nc.Shuffle(seed=42, npartitions=2, partition_to_filename=filename_fn) | ||
result_dataset = shuffle(original_dataset) | ||
assert_eq(expected_dataset.df, result_dataset.df) |