Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DOC] Update docs for 24.02.0 release [skip ci] #10387

Merged
merged 4 commits into from
Feb 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 90 additions & 0 deletions docs/archive.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,96 @@ nav_order: 15
---
Below are archived releases for RAPIDS Accelerator for Apache Spark.

## Release v23.12.2
### Hardware Requirements:

The plugin is tested on the following architectures:

GPU Models: NVIDIA V100, T4, A10/A100, L4 and H100 GPUs

### Software Requirements:

OS: Ubuntu 20.04, Ubuntu 22.04, CentOS 7, or Rocky Linux 8

NVIDIA Driver*: R470+

Runtime:
Scala 2.12, 2.13
Python, Java Virtual Machine (JVM) compatible with your spark-version.

* Check the Spark documentation for Python and Java version compatibility with your specific
Spark version. For instance, visit `https://spark.apache.org/docs/3.4.1` for Spark 3.4.1.

Supported Spark versions:
Apache Spark 3.2.0, 3.2.1, 3.2.2, 3.2.3, 3.2.4
Apache Spark 3.3.0, 3.3.1, 3.3.2, 3.3.3
Apache Spark 3.4.0, 3.4.1
Apache Spark 3.5.0

Supported Databricks runtime versions for Azure and AWS:
Databricks 10.4 ML LTS (GPU, Scala 2.12, Spark 3.2.1)
Databricks 11.3 ML LTS (GPU, Scala 2.12, Spark 3.3.0)
Databricks 12.2 ML LTS (GPU, Scala 2.12, Spark 3.3.2)

Supported Dataproc versions:
GCP Dataproc 2.0
GCP Dataproc 2.1

Supported Dataproc Serverless versions:
Spark runtime 1.1 LTS

*Some hardware may have a minimum driver version greater than R470. Check the GPU spec sheet
for your hardware's minimum driver version.

*For Cloudera and EMR support, please refer to the
[Distributions](https://docs.nvidia.com/spark-rapids/user-guide/latest/faq.html#which-distributions-are-supported) section of the FAQ.

### RAPIDS Accelerator's Support Policy for Apache Spark
The RAPIDS Accelerator maintains support for Apache Spark versions available for download from [Apache Spark](https://spark.apache.org/downloads.html)

### Download RAPIDS Accelerator for Apache Spark v23.12.2
- **Scala 2.12:**
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.12 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.2/rapids-4-spark_2.12-23.12.2.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.12 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.2/rapids-4-spark_2.12-23.12.2.jar.asc)

- **Scala 2.13:**
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.13 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.2/rapids-4-spark_2.13-23.12.2.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.13 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.2/rapids-4-spark_2.13-23.12.2.jar.asc)

This package is built against CUDA 11.8. It is tested on V100, T4, A10, A100, L4 and H100 GPUs with
CUDA 11.8 through CUDA 12.0.

### Verify signature
* Download the [PUB_KEY](https://keys.openpgp.org/[email protected]).
* Import the public key: `gpg --import PUB_KEY`
* Verify the signature for Scala 2.12 jar:
`gpg --verify rapids-4-spark_2.12-23.12.2.jar.asc rapids-4-spark_2.12-23.12.2.jar`
* Verify the signature for Scala 2.13 jar:
`gpg --verify rapids-4-spark_2.13-23.12.2.jar.asc rapids-4-spark_2.13-23.12.2.jar`

The output of signature verify:

gpg: Good signature from "NVIDIA Spark (For the signature of spark-rapids release jars) <[email protected]>"

### Release Notes
New functionality and performance improvements for this release include:
* Introduced support for chunked reading of ORC files.
* Enhanced support for additional time zones and added stack function support.
* Enhanced performance for join and aggregation operations.
* Kernel optimizations have been implemented to improve Parquet read performance.
* RAPIDS Accelerator also built and tested with Scala 2.13.
* Last version to support Pascal-based Nvidia GPUs; discontinued in the next release.
* Introduced support for parquet Legacy rebase mode (spark.sql.parquet.datetimeRebaseModeInRead=LEGACY and spark.sql.parquet.int96RebaseModeInRead=LEGACY)
* Introduced support for Percentile function.
* Delta lake 2.3 support.
* Qualification and Profiling tool:
* Profiling Tool now processes Spark Driver log for GPU runs, enhancing feature analysis.
* Auto-tuner recommendations include AQE settings for optimized performance.
* New configurations in Profiler for enabling off-default features: udfCompiler, incompatibleDateFormats, hasExtendedYearValues.

For a detailed list of changes, please refer to the
[CHANGELOG](https://github.com/NVIDIA/spark-rapids/blob/main/CHANGELOG.md).

## Release v23.12.1
### Hardware Requirements:

Expand Down
48 changes: 24 additions & 24 deletions docs/download.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ cuDF jar, that is either preinstalled in the Spark classpath on all nodes or sub
that uses the RAPIDS Accelerator For Apache Spark. See the [getting-started
guide](https://docs.nvidia.com/spark-rapids/user-guide/latest/getting-started/overview.html) for more details.

## Release v23.12.2
## Release v24.02.0
### Hardware Requirements:

The plugin is tested on the following architectures:
Expand Down Expand Up @@ -48,13 +48,16 @@ The plugin is tested on the following architectures:
Databricks 10.4 ML LTS (GPU, Scala 2.12, Spark 3.2.1)
Databricks 11.3 ML LTS (GPU, Scala 2.12, Spark 3.3.0)
Databricks 12.2 ML LTS (GPU, Scala 2.12, Spark 3.3.2)
Databricks 13.3 ML LTS (GPU, Scala 2.12, Spark 3.4.1)

Supported Dataproc versions:
GCP Dataproc 2.0
GCP Dataproc 2.1

Supported Dataproc Serverless versions:
Spark runtime 1.1 LTS
Spark runtime 2.0
Spark runtime 2.1

*Some hardware may have a minimum driver version greater than R470. Check the GPU spec sheet
for your hardware's minimum driver version.
Expand All @@ -65,14 +68,13 @@ for your hardware's minimum driver version.
### RAPIDS Accelerator's Support Policy for Apache Spark
The RAPIDS Accelerator maintains support for Apache Spark versions available for download from [Apache Spark](https://spark.apache.org/downloads.html)

### Download RAPIDS Accelerator for Apache Spark v23.12.2
- **Scala 2.12:**
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.12 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.2/rapids-4-spark_2.12-23.12.2.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.12 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.12.2/rapids-4-spark_2.12-23.12.2.jar.asc)

- **Scala 2.13:**
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.13 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.2/rapids-4-spark_2.13-23.12.2.jar)
- [RAPIDS Accelerator for Apache Spark 23.12.2 - Scala 2.13 jar.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/23.12.2/rapids-4-spark_2.13-23.12.2.jar.asc)
### Download RAPIDS Accelerator for Apache Spark v24.02.0
| Processor | Scala Version | Download Jar | Download Signature |
|-----------|---------------|--------------|--------------------|
| x86_64 | Scala 2.12 | [RAPIDS Accelerator 2.12 v24.02.0](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/24.02.0/rapids-4-spark_2.12-24.02.0.jar) | [Signature](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/24.02.0/rapids-4-spark_2.12-24.02.0.jar.asc) |
| x86_64 | Scala 2.13 | [RAPIDS Accelerator 2.13 v24.02.0](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/24.02.0/rapids-4-spark_2.13-24.02.0.jar) | [Signature](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/24.02.0/rapids-4-spark_2.13-24.02.0.jar.asc) |
| arm64 | Scala 2.12 | [RAPIDS Accelerator 2.12 v24.02.0](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/24.02.0/rapids-4-spark_2.12-24.02.0-arm64.jar) | [Signature](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/24.02.0/rapids-4-spark_2.12-24.02.0-arm64.jar.asc) |
SurajAralihalli marked this conversation as resolved.
Show resolved Hide resolved
| arm64 | Scala 2.13 | [RAPIDS Accelerator 2.13 v24.02.0](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/24.02.0/rapids-4-spark_2.13-24.02.0-arm64.jar) | [Signature](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.13/24.02.0/rapids-4-spark_2.13-24.02.0-arm64.jar.asc) |

This package is built against CUDA 11.8. It is tested on V100, T4, A10, A100, L4 and H100 GPUs with
CUDA 11.8 through CUDA 12.0.
Expand All @@ -81,29 +83,27 @@ CUDA 11.8 through CUDA 12.0.
* Download the [PUB_KEY](https://keys.openpgp.org/[email protected]).
* Import the public key: `gpg --import PUB_KEY`
* Verify the signature for Scala 2.12 jar:
`gpg --verify rapids-4-spark_2.12-23.12.2.jar.asc rapids-4-spark_2.12-23.12.2.jar`
`gpg --verify rapids-4-spark_2.12-24.02.0.jar.asc rapids-4-spark_2.12-24.02.0.jar`
* Verify the signature for Scala 2.13 jar:
`gpg --verify rapids-4-spark_2.13-23.12.2.jar.asc rapids-4-spark_2.13-23.12.2.jar`
`gpg --verify rapids-4-spark_2.13-24.02.0.jar.asc rapids-4-spark_2.13-24.02.0.jar`

The output of signature verify:

gpg: Good signature from "NVIDIA Spark (For the signature of spark-rapids release jars) <[email protected]>"

### Release Notes
New functionality and performance improvements for this release include:
* Introduced support for chunked reading of ORC files.
* Enhanced support for additional time zones and added stack function support.
* Enhanced performance for join and aggregation operations.
* Kernel optimizations have been implemented to improve Parquet read performance.
* RAPIDS Accelerator also built and tested with Scala 2.13.
* Last version to support Pascal-based Nvidia GPUs; discontinued in the next release.
* Introduced support for parquet Legacy rebase mode (spark.sql.parquet.datetimeRebaseModeInRead=LEGACY and spark.sql.parquet.int96RebaseModeInRead=LEGACY)
* Introduced support for Percentile function.
* Delta lake 2.3 support.
* Qualification and Profiling tool:
* Profiling Tool now processes Spark Driver log for GPU runs, enhancing feature analysis.
* Auto-tuner recommendations include AQE settings for optimized performance.
* New configurations in Profiler for enabling off-default features: udfCompiler, incompatibleDateFormats, hasExtendedYearValues.
* Discontinued support for Nvidia GPUs based on Pascal architecture.
SurajAralihalli marked this conversation as resolved.
Show resolved Hide resolved
* Set get_json_object functionality to disabled by default.
* Implemented string comparison in AST expressions.
* Expanded timezone support to include options beyond UTC.
* Optional checksums for cached files in the file cache.
* Introduced support for Databricks 13.3 ML LTS.
* Added support for parse_url functionality.
SurajAralihalli marked this conversation as resolved.
Show resolved Hide resolved
* Introducing Lazy Quantifier support for regular expression functions.
* Added support for the format_number function.
* Enhanced batching support for row-based bounded window functions.
* For updates on RAPIDS Accelerator Tools, please visit [this link](https://github.com/NVIDIA/spark-rapids-tools/releases).

For a detailed list of changes, please refer to the
[CHANGELOG](https://github.com/NVIDIA/spark-rapids/blob/main/CHANGELOG.md).
Expand Down
Loading