Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

small fix in 3.4 #46

Merged
merged 2 commits into from
May 31, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions Chaps/Chap3.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1161,7 +1161,7 @@ \subsection{闭壳层H-F:限制性自旋轨道}\label{sec3.4.1}
那么
\begin{alignat}{3}
f(\mathbf{r}_1)\psi_j(\mathbf{r}_1) &= h(\mathbf{r}_1)\psi_j(\mathbf{r}_1) &+ \sum_c\int\dd\omega_1\dd{x}_2\,\alpha^*(\omega_1)\chi_c^*(\mathbf{x}_1)\twoe\chi_c(\mathbf{x}_2)\alpha(\omega_1)\psi_j(\mathbf{r}_1)\notag\\
&&-\sum_c\int\dd\omega_1\dd{x}_2\,\alpha^*(\omega_1)\chi_c^*(\mathbf{x}_1)\twoe\chi_c(\mathbf{x}_1)\alpha(\omega_2)\psi_j(\mathbf{r}_2)\notag\\
&&-\sum_c\int\dd\omega_1\dd{x}_2\,\alpha^*(\omega_1)\chi_c^*(\mathbf{x}_2)\twoe\chi_c(\mathbf{x}_1)\alpha(\omega_2)\psi_j(\mathbf{r}_2)\notag\\
&=\epsilon_j\psi_j(\mathbf{r}_1)&
\end{alignat}
式中含$h(\mathbf{r}_1)$的那项中$\dd\omega_1$的积分已经预先积完,
Expand All @@ -1178,13 +1178,13 @@ \subsection{闭壳层H-F:限制性自旋轨道}\label{sec3.4.1}
& {}\quad + \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\alpha^*(\omega_2)\twoe\psi_c(\mathbf{r}_2)\alpha(\omega_2)\alpha(\omega_1)\psi_j(\mathbf{r}_1)\notag\\
& {}\quad + \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\beta^*(\omega_2)\twoe\psi_c(\mathbf{r}_2)\beta(\omega_2)\alpha(\omega_1)\psi_j(\mathbf{r}_1)\notag\\
& {}\quad - \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\alpha^*(\omega_2)\twoe\psi_c(\mathbf{r}_1)\alpha(\omega_1)\alpha(\omega_2)\psi_j(\mathbf{r}_2)\notag\\
& {}\quad - \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\beta^*(\omega_2)\twoe\psi_c(\mathbf{r}_2)\beta(\omega_1)\alpha(\omega_2)\psi_j(\mathbf{r}_1)\notag\\
& {}\quad - \sum_c^{N/2}\int\dd\omega_1\dd\omega_2\dd{r}_2\,\alpha^*(\omega_1)\psi_c^*(\mathbf{r}_2)\beta^*(\omega_2)\twoe\psi_c(\mathbf{r}_1)\beta(\omega_1)\alpha(\omega_2)\psi_j(\mathbf{r}_1)\notag\\
& = \epsilon_j\psi_j(\mathbf{r}_1)
\label{3.120}
\end{align}
现在可以进行对$\dd\omega_1$和$\dd\omega_2$的积分.
\autoref{3.120}中最后一项根据自旋正交性为零.
这反映自旋平行电子之间没有交换作用的事实.
这反映了交换作用只存在于自旋平行电子之间的事实.
两个库伦项是相等的,
那么可得
\begin{alignat}{3}
Expand Down
Loading