Skip to content

Commit

Permalink
Parsing of time-dependent data, plot overload (#31)
Browse files Browse the repository at this point in the history
* transform_solutions for time-dependent results

* plot overloaded for Result and ODESolution

* examples and docs changes

* Jacobian bugfix
  • Loading branch information
jkosata authored May 26, 2022
1 parent 47174b8 commit 75528ae
Show file tree
Hide file tree
Showing 13 changed files with 129 additions and 64 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "HarmonicBalance"
uuid = "e13b9ff6-59c3-11ec-14b1-f3d2cc6c135e"
authors = ["Jan Kosata <[email protected]>", "Javier del Pino <[email protected]>"]
version = "0.5.1"
version = "0.5.2"

[deps]
BijectiveHilbert = "91e7fc40-53cd-4118-bd19-d7fcd1de2a54"
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ Classes: stable, physical, Hopf, binary_labels
```

```julia
plot_1D_solutions(solutions, x="ω", y="sqrt(u1^2 + v1^2)");
plot(solutions, x="ω", y="sqrt(u1^2 + v1^2)");
```

<img src="/docs/images/DuffingPlot.png" width="500">
Expand Down
6 changes: 3 additions & 3 deletions docs/src/examples/linear_response.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ fixed = (α => 1, ω0 => 1.0, γ => 1E-2, F => 1E-6) # fixed parameters
swept = ω => LinRange(0.9, 1.1, 100) # range of parameter values
solutions = get_steady_states(harmonic_eq, swept, fixed)

plot_1D_solutions(solutions, x="ω", y="sqrt(u1^2 + v1^2)")
plot(solutions, x="ω", y="sqrt(u1^2 + v1^2)")
```

```@raw html
Expand All @@ -54,7 +54,7 @@ fixed = (α => 1, ω0 => 1.0, γ => 1E-2, F => 1E-2) # fixed parameters
swept = ω => LinRange(0.9, 1.1, 100) # range of parameter values
solutions = get_steady_states(harmonic_eq, swept, fixed)

plot_1D_solutions(solutions, x="ω", y="sqrt(u1^2 + v1^2)");
plot(solutions, x="ω", y="sqrt(u1^2 + v1^2)");
```
```@raw html
<img style="display: block; margin: 0 auto;" src="../../assets/linear_response/Duffing_nonlin_amp.png" width="450" alignment="left" \>
Expand All @@ -81,7 +81,7 @@ fixed = (α => 1., ω0 => 1.0, γ => 1E-2, ω => 1) # fixed parameters
swept = F => 10 .^ LinRange(-6, -1, 200) # range of parameter values
solutions = get_steady_states(harmonic_eq, swept, fixed)

plot_1D_solutions(solutions, x="F", y="sqrt(u1^2 + v1^2)");
plot(solutions, x="F", y="sqrt(u1^2 + v1^2)");
HarmonicBalance.xscale("log") # use log scale on x

LinearResponse.plot_jacobian_spectrum(solutions, x,
Expand Down
6 changes: 3 additions & 3 deletions docs/src/examples/single_Duffing.md
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ The "Classes" are boolean labels classifying each solution point, which may be u

We now want to visualize the results. Here we plot the solution amplitude, ``\sqrt{U^2 + V^2}`` against the drive frequency ``\omega``:
```julia
plot_1D_solutions(solutions, x="ω", y="sqrt(u1^2 + v1^2)")
plot(solutions, x="ω", y="sqrt(u1^2 + v1^2)")
```
```@raw html
<img style="display: block; margin: 0 auto;" src="../../assets/duffing_single.png" width="450" alignment="center" \>
Expand Down Expand Up @@ -170,8 +170,8 @@ Classes: stable, physical, Hopf, binary_labels

Although 9 branches were found in total, only 3 remain physical (real-valued). Let us visualise the amplitudes corresponding to the two harmonics, ``\sqrt{U_1^2 + V_1^2}`` and ``\sqrt{U_2^2 + V_2^2}`` :
```julia
plot_1D_solutions(solutions, x="ω", y="sqrt(u1^2 + v1^2)")
plot_1D_solutions(solutions, x="ω", y="sqrt(u2^2 + v2^2)")
plot(solutions, x="ω", y="sqrt(u1^2 + v1^2)")
plot(solutions, x="ω", y="sqrt(u2^2 + v2^2)")
```
![fig3](./../assets/duff_nonpert_w_3w.png)

Expand Down
6 changes: 3 additions & 3 deletions docs/src/examples/single_parametron_1D.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,15 +55,15 @@ HarmonicBalance.save("parametron_result.jld2", soln);

During the execution of `get_steady_states`, different solution branches are classified by their proximity in complex space, with subsequent filtering of real (physically accceptable solutions). In addition, the stability properties of each steady state is assesed from the eigenvalues of the Jacobian matrix. All this information can be succintly represented in a 1D plot via
```julia
save_dict = HarmonicBalance.plot_1D_solutions(soln, x="ω", y="sqrt(u1^2 + v1^2)", plot_only=["physical"]);
save_dict = HarmonicBalance.plot(soln, x="ω", y="sqrt(u1^2 + v1^2)", plot_only=["physical"]);
```
where `save_dict` is a dictionary that contains the plotted data and can be also exported if desired by setting a filename through the argument `filename` in `plot_1D_solutions`. A call to the above function produces the following figure
where `save_dict` is a dictionary that contains the plotted data and can be also exported if desired by setting a filename through the argument `filename` in `plot`. A call to the above function produces the following figure

![fig1](./../assets/single_parametron_1D.png)

The user can also can also introduce custom clases based on parameter conditions. Here we show some arbitrary example
```julia
plt = HarmonicBalance.plot_1D_solutions(soln, x="ω", y="sqrt(u1^2 + v1^2)", marker_classification="ω^15 * sqrt(u1^2 + v1^2) < 0.1")
plt = HarmonicBalance.plot(soln, x="ω", y="sqrt(u1^2 + v1^2)", marker_classification="ω^15 * sqrt(u1^2 + v1^2) < 0.1")
```
producing

Expand Down
2 changes: 1 addition & 1 deletion docs/src/examples/single_parametron_time_dep.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ fixed_parameters = ParameterList(Ω => 1.0,γ => 1E-2, λ => 5E-2, F => 1E-3,
Finally, we solve the harmonic equations and represent the solutions by

```julia
time_dep = HarmonicBalance.TimeEvolution.ODEProblem(averagedEOM, fixed_parameters, sweep=HarmonicBalance.TimeEvolution.ParameterSweep(), x0 = x0, timespan = times);
time_dep = HarmonicBalance.TimeEvolution.(averagedEOM, fixed_parameters, sweep=HarmonicBalance.TimeEvolution.ParameterSweep(), x0 = x0, timespan = times);
time_soln = HarmonicBalance.TimeEvolution.solve(time_dep, saveat=dt);
HarmonicBalance.plot(getindex.(time_soln.u, 1), getindex.(time_soln.u,2))
HarmonicBalance.xlabel("u",fontsize=20)
Expand Down
10 changes: 5 additions & 5 deletions docs/src/examples/time_dependent.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ DifferentialEquations.jl takes it from here - we only need to use `solve`.

```julia
time_evo = solve(ode_problem, saveat=1.);
plot(getindex.(time_evo.u, 1), getindex.(time_evo.u,2))
plot(time_evo, ["u1", "v1"], harmonic_eqs)
```

Running the above code with `x0 = [0., 0.]` and `x0 = [0.2, 0.2]` gives the plots
Expand All @@ -79,7 +79,7 @@ Let us compare this to the steady state diagram.
```julia
range = ω => LinRange(0.9, 1.1, 100) # range of parameter values
solutions = get_steady_states(harmonic_eqs, range, fixed)
plot_1D_solutions(solutions, x="ω", y="sqrt(u1^2 + v1^2)*sign(u1)");
plot(solutions, x="ω", y="sqrt(u1^2 + v1^2)*sign(u1)");
```
```@raw html
<img style="display: block; margin: 0 auto;" src="../../assets/time_dependent/parametron_response.png" width="600" alignment="center" \>
Expand All @@ -101,7 +101,7 @@ Let us now define a new `ODEProblem` which incorporates `sweep` and again use `s
```julia
ode_problem = ODEProblem(harmonic_eqs, fixed, sweep=sweep, x0=[0.1;0.0], timespan=(0, 2E4))
time_evo = solve(prob, saveat=100)
plot(time_evo.t, sqrt.(getindex.(time_evo.u,1).^2 .+ getindex.(time_evo,2).^2))
plot(time_evo, "sqrt(u1^2 + v1^2)", harmonic_eqs)
```
```@raw html
<img style="display: block; margin: 0 auto;" src="../../assets/time_dependent/sweep_omega.png" width="450" alignment="center" \>
Expand Down Expand Up @@ -190,7 +190,7 @@ Solution branches: 9

Let us first see the steady states.
```julia
plt = plot_1D_solutions(soln, x="F0", y="u1^2 + v1^2", yscale=:log);
plt = plot(soln, x="F0", y="u1^2 + v1^2", yscale=:log);
```
```@raw html
<img style="display: block; margin: 0 auto; padding-bottom: 20px" src="../../assets/time_dependent/pra_ss.png" width="1000" alignment="center"\>
Expand All @@ -212,7 +212,7 @@ TDsoln = solve(TDproblem, saveat=1); # space datapoints by 1
```
Inspecting for example $u_1(T)$ as a function of time,
```julia
plot(TDsoln.t, getindex.(TDsoln.u, 1))
plot(time_evo, "u1", harmonic_eqs)
```
```@raw html
<img style="display: block; margin: 0 auto; padding-bottom: 20px" src="../../assets/time_dependent/lc_sweep.png" width="450" alignment="center" \>
Expand Down
5 changes: 5 additions & 0 deletions docs/src/manual/plotting.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,12 +11,17 @@ HarmonicBalance.transform_solutions
Any function of the steady state solutions may be plotted.
In 1D, the solutions are colour-coded according to the branches obtained by `sort_solutions`.

Note: from v0.5.2, `plot(r::Result, x::String, y::String)` can be used to call `plot_1D_solutions` and `plot_2D_solutions` as needed.
To plot a function `y` of a time-dependent result `r`, the syntax is `plot(r::OrdinaryDiffEq.ODECompositeSolution, y, he::HarmonicEquation)`. For `y::String`, `y` is parsed into a function and plotted as a function of time.

```@docs
HarmonicBalance.plot_1D_solutions
HarmonicBalance.plot_1D_jacobian_eigenvalues
HarmonicBalance.plot_2D_solutions
```



## Plotting phase diagrams (2D)

In many problems, rather than in any property of the solutions themselves, we are interested in the phase diagrams, encoding the number of (stable) solutions in different regions of the parameter space. We provide functions to tackle solutions calculated over 2D parameter grids.
Expand Down
1 change: 1 addition & 0 deletions src/HarmonicBalance.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ module HarmonicBalance
include("sorting.jl")
include("classification.jl")
include("saving.jl")
include("transform_solutions.jl")
include("plotting_static.jl")
include("plotting_interactive.jl")
include("hysteresis_sweep.jl")
Expand Down
2 changes: 1 addition & 1 deletion src/modules/HC_wrapper/homotopy_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ function Problem(eom::HarmonicEquation; Jacobian=true)
elseif Jacobian == "implicit"
# compute the Jacobian implicitly
J = HarmonicBalance.LinearResponse.get_implicit_Jacobian(eom)
elseif Jacobian == "false"
elseif Jacobian == "false" || Jacobian == false
dummy_J(arg) = I(1)
J = dummy_J
else
Expand Down
24 changes: 20 additions & 4 deletions src/modules/TimeEvolution/ODEProblem.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
using LinearAlgebra

using LinearAlgebra, PyPlot
import HarmonicBalance: transform_solutions, plot
export transform_solutions, plot

"""

Expand All @@ -15,7 +16,7 @@ Creates an ODEProblem object used by DifferentialEquations.jl from the equations
`fixed_parameters` must be a dictionary mapping parameters+variables to numbers (possible to use a solution index, e.g. solutions[x][y] for branch y of solution x).
If `x0` is specified, it is used as an initial condition; otherwise the values from `fixed_parameters` are used.
"""
function ODEProblem(eom::HarmonicEquation, fixed_parameters; sweep::ParameterSweep=ParameterSweep(), x0::Vector=[], timespan::Tuple, perturb_initial=0.0)
function ODEProblem(eom::HarmonicEquation, fixed_parameters; sweep::ParameterSweep=ParameterSweep(), x0::Vector=[], timespan::Tuple, perturb_initial=0.0, kwargs...)

if !is_rearranged(eom) # check if time-derivatives of the variable are on the right hand side
eom = HarmonicBalance.rearrange_standard(eom)
Expand Down Expand Up @@ -43,7 +44,7 @@ function ODEProblem(eom::HarmonicEquation, fixed_parameters; sweep::ParameterSwe
# the initial condition is x0 if specified, taken from fixed_parameters otherwise
initial = isempty(x0) ? real.(collect(values(fixed_parameters))[1:length(vars)]) * (1-perturb_initial) : x0

return DifferentialEquations.ODEProblem(f!, initial, timespan)
return DifferentialEquations.ODEProblem(f!, initial, timespan; kwargs...)
end


Expand All @@ -61,4 +62,19 @@ function is_stable(soln::StateDict, eom::HarmonicEquation; timespan, tol=1E-1, p
solution = solve(problem)
dist = norm(solution[end] - solution[1]) / (norm(solution[end]) + norm(solution[1]))
!is_real(solution[end]) || !is_real(solution[1]) ? error("the solution is complex!") : dist < tol
end


transform_solutions(soln::OrdinaryDiffEq.ODECompositeSolution, f::String, harm_eq::HarmonicEquation) = transform_solutions(soln.u, f, harm_eq)
transform_solutions(s::OrdinaryDiffEq.ODECompositeSolution, funcs::Vector{String}, he::HarmonicEquation) = [transform_solutions(s, f, he) for f in funcs]


function plot(soln::OrdinaryDiffEq.ODECompositeSolution, funcs, harm_eq::HarmonicEquation)
if funcs isa String || length(funcs) == 1
plot(soln.t, transform_solutions(soln, funcs, harm_eq))
elseif length(funcs) == 2
plot(transform_solutions(soln, funcs, harm_eq)...)
else
error("Invalid plotting argument: ", funcs)
end
end
65 changes: 23 additions & 42 deletions src/plotting_static.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,12 @@ using PyCall
using Latexify
using JLD2
using Base
export plot_1D_solutions, plot_2D_phase_diagram, transform_solutions
export plot_1D_solutions, plot_2D_phase_diagram
export _set_plotting_settings, _prepare_colorbar, _prettify_label

import PyPlot: plot
export plot


"Set global plotting settings"
function _set_plotting_settings()
Expand Down Expand Up @@ -65,46 +68,6 @@ function filter_solutions(solution::Vector, booleans)
end


"""
$(TYPEDSIGNATURES)

Takes a `Result` object and a string `f` representing a Symbolics.jl expression.
Returns an array with the values of `f` evaluated for the respective solutions.
Additional substitution rules can be specified in `rules` in the format `("a" => val)` or `(a => val)`
"""
function transform_solutions(res::Result, f::String; rules=Dict())
# a string is used as input - a macro would not "see" the user's namespace while the user's namespace does not "see" the variables
transformed = [Vector{ComplexF64}(undef, length(res.solutions[1])) for k in res.solutions] # preallocate

# define variables in rules in this namespace
new_keys = declare_variable.(string.(keys(Dict(rules))))
expr = f isa String ? Num(eval(Meta.parse(f))) : f

fixed_subs = merge(res.fixed_parameters, Dict(zip(new_keys, values(Dict(rules)))))
expr = substitute_all(expr, Dict(fixed_subs))

vars = res.problem.variables
all_symbols = cat(vars, collect(keys(res.swept_parameters)), dims=1)
comp_func = build_function(expr, all_symbols)
f = eval(comp_func)

# preallocate an array for the numerical values, rewrite parts of it
# when looping through the solutions
vals = Vector{ComplexF64}(undef, length(all_symbols))
n_vars = length(vars)
n_pars = length(all_symbols) - n_vars

for idx in CartesianIndices(res.solutions)
params_values = res.swept_parameters[Tuple(idx)...]
vals[end-n_pars+1:end] .= params_values # param values are common to all branches
for (branch,soln) in enumerate(res.solutions[idx])
vals[1:n_vars] .= soln
transformed[idx][branch] = Base.invokelatest(f, vals)
end
end
return transformed
end

"""
$(TYPEDSIGNATURES)

Expand Down Expand Up @@ -589,4 +552,22 @@ function plot_2D_phase_diagram(res::Result; stable=false,observable="nsols",ax=n
!isnothing(filename) ? JLD2.save(_jld2_name(filename),save_dict) : nothing
return save_dict,im,Nmax

end
end


##########
# Plot multiple dispatch
##########

function plot(res::Result; x::String, y::String, kwargs...)
if length(size(res.solutions)) == 1
plot_1D_solutions(res; x=x, y=y, kwargs...)
elseif length(size(res.solutions)) == 2
plot_2D_solutions(res; x=x, y=y, kwargs...)
else
error("error")
end
end


plot(res::Result, x::String, y::String; kwargs...) = plot(res; x=x, y=y, kwargs...)
62 changes: 62 additions & 0 deletions src/transform_solutions.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
export transform_solutions


_parse_expression(exp) = exp isa String ? Num(eval(Meta.parse(exp))) : exp


"""
$(TYPEDSIGNATURES)

Takes a `Result` object and a string `f` representing a Symbolics.jl expression.
Returns an array with the values of `f` evaluated for the respective solutions.
Additional substitution rules can be specified in `rules` in the format `("a" => val)` or `(a => val)`
"""
function transform_solutions(res::Result, f::String; rules=Dict())
# a string is used as input - a macro would not "see" the user's namespace while the user's namespace does not "see" the variables
transformed = [Vector{ComplexF64}(undef, length(res.solutions[1])) for k in res.solutions] # preallocate

# define variables in rules in this namespace
new_keys = declare_variable.(string.(keys(Dict(rules))))
expr = f isa String ? _parse_expression(f) : f

fixed_subs = merge(res.fixed_parameters, Dict(zip(new_keys, values(Dict(rules)))))
expr = substitute_all(expr, Dict(fixed_subs))

vars = res.problem.variables
all_symbols = cat(vars, collect(keys(res.swept_parameters)), dims=1)
comp_func = build_function(expr, all_symbols)
f = eval(comp_func)

# preallocate an array for the numerical values, rewrite parts of it
# when looping through the solutions
vals = Vector{ComplexF64}(undef, length(all_symbols))
n_vars = length(vars)
n_pars = length(all_symbols) - n_vars

for idx in CartesianIndices(res.solutions)
params_values = res.swept_parameters[Tuple(idx)...]
vals[end-n_pars+1:end] .= params_values # param values are common to all branches
for (branch,soln) in enumerate(res.solutions[idx])
vals[1:n_vars] .= soln
transformed[idx][branch] = Base.invokelatest(f, vals)
end
end
return transformed
end


# a simplified version meant to work with arrays of solutions
# cannot parse parameter values mainly meant for time-dependent results
function transform_solutions(soln::Vector, f::String, harm_eq::HarmonicEquation)

vars = _remove_brackets(get_variables(harm_eq))
transformed = Vector{ComplexF64}(undef, length(soln))

# parse the input with Symbolics
expr = HarmonicBalance._parse_expression(f)

rule(u) = Dict(zip(vars, u))

transformed = map( x -> substitute_all(expr, rule(x)), soln)
return convert(typeof(soln[1]), transformed)
end

0 comments on commit 75528ae

Please sign in to comment.