Skip to content

Commit

Permalink
Limit cycle classes (#55)
Browse files Browse the repository at this point in the history
* fixed loading for version changes

* ordering revamped to have fixed order

* limit cycle unique classification

* 2d result test added
  • Loading branch information
jkosata authored Oct 12, 2022
1 parent 925c757 commit d421519
Show file tree
Hide file tree
Showing 10 changed files with 71 additions and 40 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "HarmonicBalance"
uuid = "e13b9ff6-59c3-11ec-14b1-f3d2cc6c135e"
authors = ["Jan Kosata <[email protected]>", "Javier del Pino <[email protected]>"]
version = "0.6.1"
version = "0.6.2"

[deps]
BijectiveHilbert = "91e7fc40-53cd-4118-bd19-d7fcd1de2a54"
Expand Down
11 changes: 8 additions & 3 deletions src/classification.jl
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,19 @@ classify_solutions!(res, "sqrt(u1^2 + v1^2) > 1.0" , "large_amplitude")
"""
function classify_solutions!(res::Result, condition::String, name::String; physical=true)
values = classify_solutions(res, condition; physical=physical)
res.classes[name] = values
end


function classify_solutions(res::Result, condition::String; physical=true)
expr = Num(eval(Meta.parse(condition)))
function cond_func(s::OrderedDict, res)
physical && !is_physical(s, res) && return false
s = [key => real(s[key]) for key in keys(s)] # make values real
Bool(substitute_all(expr, s).val)
end
values = classify_solutions(res, cond_func)
res.classes[name] = values
classify_solutions(res, cond_func)
end


Expand All @@ -43,7 +48,7 @@ end
"Return an array of booleans classifying the solution in `res`
according to `f` (`f` takes a solution dictionary, return a boolean)"
function classify_solutions(res::Result, f::Function)
values = similar(res.solutions, Vector{Bool})
values = similar(res.solutions, BitVector)
for (idx, soln) in enumerate(res.solutions)
values[idx] = [f(get_single_solution(res, index=idx, branch=b), res) for b in 1:length(soln)]
end
Expand Down
1 change: 1 addition & 0 deletions src/modules/LimitCycles.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,5 +5,6 @@ using Symbolics
using DocStringExtensions

include("LimitCycles/Hopf.jl")
include("LimitCycles/analysis.jl")

end
10 changes: 8 additions & 2 deletions src/modules/LimitCycles/Hopf.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ export replace_Hopf_variable!

using HarmonicBalance: is_rearranged, rearrange_standard, _remove_brackets
using HarmonicBalance.LinearResponse: get_implicit_Jacobian, get_Jacobian
import HarmonicBalance: is_stable, is_physical, is_Hopf_unstable, order_branches!, classify_binaries!
import HarmonicBalance: is_stable, is_physical, is_Hopf_unstable, order_branches!, classify_binaries!, find_branch_order
#import HarmonicBalance.get_steady_states; export get_steady_states


Expand Down Expand Up @@ -97,7 +97,13 @@ function _classify_limit_cycles!(res::Result, Δω::Num)
res.classes[c][idx] .*= abs.(getindex.(res.solutions[idx], Δω_idx)) .> 1E-10
end

order_branches!(res, ["physical", "stable", "Hopf"]) # shuffle the branches to have relevant ones first
classify_unique!(res, Δω)

unique_stable = find_branch_order(map(.*, res.classes["stable"], res.classes["unique"]))

# branches which are unique but never stable
unique_unstable = setdiff(find_branch_order(map(.*, res.classes["unique"], res.classes["physical"])), unique_stable)
order_branches!(res, vcat(unique_stable, unique_unstable)) # shuffle to have relevant branches first
end


Expand Down
15 changes: 15 additions & 0 deletions src/modules/LimitCycles/analysis.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@


import HarmonicBalance.classify_solutions

function classify_unique!(res::Result, Δω; class_name="unique")

# 1st degeneracy: arbitrary sign of Δω
c1 = classify_solutions(res, string(Δω) * ">= 0")

# 2nd degeneracy: ambiguity in the fixed phase, manifests as the sign of var
var = HarmonicBalance._remove_brackets(get_Hopf_variables(res.problem.eom, Δω)[1])
c2 = classify_solutions(res, string(var) * ">= 0")

res.classes[class_name] = map(.*, c1, c2)
end
4 changes: 1 addition & 3 deletions src/saving.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,7 @@ function save(filename, x::Result)
x_nofunc = deepcopy(x)

# compiled functions cause problems in saving: ignore J now, compile when loading
null_J() = 0
x_nofunc.jacobian = null_J
x_nofunc.jacobian = 0
JLD2.save(_jld2_name(filename), Dict("object" => x_nofunc))
end

Expand All @@ -37,7 +36,6 @@ reinstated in the `HarmonicBalance` namespace.
"""
function load(filename)
loaded = JLD2.load(filename)

if haskey(loaded,"object") #otherwise save data is from a plot
loaded = loaded["object"]

Expand Down
47 changes: 24 additions & 23 deletions src/solve_homotopy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ function _classify_default!(result)
classify_solutions!(result, is_physical, "physical")
classify_solutions!(result, is_stable, "stable")
classify_solutions!(result, is_Hopf_unstable, "Hopf")
order_branches!(result, ["physical", "stable", "Hopf"]) # shuffle the branches to have relevant ones first
order_branches!(result, ["physical", "stable"]) # shuffle the branches to have relevant ones first
classify_binaries!(result) # assign binaries to solutions depending on which branches are stable
end

Expand Down Expand Up @@ -160,37 +160,38 @@ function compile_matrix(matrix, variables, fixed_parameters)
end


"Order the solution branches in `res` such that close classified positively by `class` are first."
function order_branches!(res::Result, class::String)
indices = findall( x-> x==1, any.(classify_branch(res, class)))
order = cat(indices, setdiff(1:length(res.solutions[1]), indices), dims=1) # permutation of indices which puts stable branches first
reorder_solutions!(res, order)
"Find a branch order according `classification`. Place branches where true occurs earlier first."
function find_branch_order(classification::Vector{BitVector})
branches = [getindex.(classification, k) for k in 1:length(classification[1])] # array of branches
indices = replace(findfirst.(branches), nothing => Inf)
negative = findall(x -> x == Inf, indices) # branches not true anywhere - leave out
order = setdiff(sortperm(indices), negative)
end

"Order the solution branches in `res` such that close classified positively by `classes` are first.
The order of classes has descending precedence."
function order_branches!(s::Result, classes::Vector{String})
for class in reverse(classes)
order_branches!(s, class)
end
find_branch_order(classification::Array) = collect(1:length(classification[1])) # no ordering for >1D

"Order the solution branches in `res` such that close classified positively by `classes` are first."
function order_branches!(res::Result, classes::Vector{String})
for class in classes
order_branches!(res, find_branch_order(res.classes[class]))
end
end

order_branches!(res::Result, class::String) = order_branches!(res, [class])

"Reorder the solutions in `res` to match the index permutation `order`."
function reorder_solutions!(res::Result, order::Vector{Int64})
res.solutions = reorder_array(res.solutions, order)
function order_branches!(res::Result, order::Vector{Int64})
res.solutions = _reorder_nested(res.solutions, order)
for key in keys(res.classes)
res.classes[key] = reorder_array(res.classes[key], order)
res.classes[key] = _reorder_nested(res.classes[key], order)
end
end

"Reorder EACH ELEMENT of `a` to match the index permutation `order`."
function reorder_array(a::Array, order::Vector{Int64})
a[1] isa Array || return a
new_array = similar(a)
for (i,el) in enumerate(a)
new_array[i] = el[order]
end
return new_array
"Reorder EACH ELEMENT of `a` to match the index permutation `order`. If length(order) < length(array), the remanining positions are kept."
function _reorder_nested(a::Array, order::Vector{Int64})
a[1] isa Union{Array, BitVector} || return a
order = length(order) == length(a) ? order : vcat(order, setdiff(1:length(a[1]), order)) # pad if needed
new_array = [el[order] for el in a]
end


Expand Down
2 changes: 1 addition & 1 deletion src/types.jl
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,7 @@ mutable struct Result
If problem.jacobian is a symbolic matrix, this holds a compiled function.
If problem.jacobian was `false`, this holds a function that rearranges the equations to find J
only after numerical values are inserted (preferable in cases where the symbolic J would be very large)."
jacobian::Function
jacobian::Union{Function, Int64}

Result(sol,swept, fixed, problem, classes, J) = new(sol, swept, fixed, problem, classes, J)
Result(sol,swept, fixed, problem, classes) = new(sol, swept, fixed, problem, classes)
Expand Down
19 changes: 12 additions & 7 deletions test/parametron.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,19 +7,24 @@ using Test

natural_equation = d(d(x,t),t) + γ*d(x,t) + Ω^2*(1-λ*cos(2*ω*t+ψ))*x + α * x^3 +η *d(x,t) * x^2
forces = F*cos*t+θ)
dEOM = HarmonicBalance.DifferentialEquation(natural_equation + forces, x)
HarmonicBalance.add_harmonic!(dEOM, x, ω)
harmonic_eq = HarmonicBalance.get_harmonic_equations(dEOM, slow_time=T, fast_time=t);
dEOM = DifferentialEquation(natural_equation + forces, x)
add_harmonic!(dEOM, x, ω)
harmonic_eq = get_harmonic_equations(dEOM, slow_time=T, fast_time=t);
p = HarmonicBalance.Problem(harmonic_eq);


fixed_parameters ==> 1.0=> 1E-2, λ => 5E-2, F => 1E-3, α => 1., η=>0.3, θ => 0, ψ => 0)
sweep = ω => LinRange(0.9, 1.1, 100)
soln = HarmonicBalance.get_steady_states(p, sweep, fixed_parameters)
fixed ==> 1.0=> 1E-2, λ => 5E-2, F => 1E-3, α => 1., η=>0.3, θ => 0, ψ => 0)
varied = ω => LinRange(0.9, 1.1, 100)
res = get_steady_states(p, varied, fixed)

# save the result, try and load in the next step
#current_path = @__DIR__
#HarmonicBalance.save(current_path * "/parametron_result.jld2", soln)
#HarmonicBalance.save(current_path * "/parametron_result.jld2", res)

# try to run a 2D calculation
fixed ==> 1.0=> 1E-2, F => 1E-3, α => 1., η=>0.3, θ => 0, ψ => 0)
varied ==> LinRange(0.9, 1.1, 10), λ => LinRange(0.01, 0.05, 10))
res = get_steady_states(p, varied, fixed)


###
Expand Down
Binary file modified test/parametron_result.jld2
Binary file not shown.

0 comments on commit d421519

Please sign in to comment.