Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove magritte dependency #370

Merged
merged 2 commits into from
Oct 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ Imports:
CDMConnector (>= 1.3.1),
checkmate,
cli,
clock,
dbplyr (>= 2.5.0),
dplyr,
glue,
Expand Down
2 changes: 1 addition & 1 deletion R/conceptCohort.R
Original file line number Diff line number Diff line change
Expand Up @@ -288,7 +288,7 @@ unerafiedConceptCohort <- function(cdm,
}
}

cohorts <- cohorts %>%
cohorts <- cohorts |>
purrr::discard(is.null)

if (length(cohorts) == 0) {
Expand Down
107 changes: 48 additions & 59 deletions R/intersectCohorts.R
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,9 @@ intersectCohorts <- function(cohort,
# get intersections between cohorts
tblName <- omopgenerics::uniqueTableName(prefix = uniquePrefix)
lowerWindow <- ifelse(gap != 0, -gap, gap)
cohortOut <- cohort %>%
dplyr::filter(.data$cohort_definition_id %in% .env$cohortId) %>%
dplyr::select(-"cohort_definition_id") %>%
cohortOut <- cohort |>
dplyr::filter(.data$cohort_definition_id %in% .env$cohortId) |>
dplyr::select(-"cohort_definition_id") |>
splitOverlap(by = "subject_id", name = tblName, tmp = paste0(tblName)) |>
PatientProfiles::addCohortIntersectFlag(
targetCohortTable = omopgenerics::tableName(cohort),
Expand All @@ -77,13 +77,13 @@ intersectCohorts <- function(cohort,
)

# create intersect cohort set
cohortNames <- omopgenerics::settings(cohort) %>%
dplyr::filter(.data$cohort_definition_id %in% .env$cohortId) %>%
cohortNames <- omopgenerics::settings(cohort) |>
dplyr::filter(.data$cohort_definition_id %in% .env$cohortId) |>
dplyr::pull("cohort_name")
x <- rep(list(c(0, 1)), length(cohortNames))
names(x) <- cohortNames
cohSet <- expand.grid(x) %>%
dplyr::as_tibble() %>%
cohSet <- expand.grid(x) |>
dplyr::as_tibble() |>
dplyr::filter(dplyr::if_any(dplyr::everything(), ~ . != 0)) |>
addNames() |>
dplyr::mutate(cohort_definition_id = as.integer(dplyr::row_number())) |>
Expand Down Expand Up @@ -124,13 +124,13 @@ intersectCohorts <- function(cohort,
name = setName,
table = cohSet
)
cohortOut <- cohortOut %>%
dplyr::inner_join(cdm[[setName]], by = cohortNames) %>%
cohortOut <- cohortOut |>
dplyr::inner_join(cdm[[setName]], by = cohortNames) |>
dplyr::select("cohort_definition_id", "subject_id",
"cohort_start_date", "cohort_end_date") %>%
"cohort_start_date", "cohort_end_date") |>
dplyr::compute(name = tblName, temporary = FALSE)
if (cohortOut |> dplyr::tally() |> dplyr::pull("n") > 0) {
cohortOut <- cohortOut %>%
cohortOut <- cohortOut |>
PatientProfiles::addObservationPeriodId(name = tblName) |>
joinOverlap(
name = tblName, gap = gap,
Expand Down Expand Up @@ -202,7 +202,7 @@ intersectCohorts <- function(cohort,
)
cdm <- bind(originalCohorts, cohortOut, name = name)
} else {
cohortOut <- cohortOut %>%
cohortOut <- cohortOut |>
dplyr::compute(name = name, temporary = FALSE)
cdm[[name]] <- omopgenerics::newCohortTable(
table = cohortOut,
Expand Down Expand Up @@ -260,49 +260,49 @@ splitOverlap <- function(x,
ie <- ids[3]

tmpTable_1 <- paste0(tmp, "_1")
x_a <- x %>%
dplyr::select(dplyr::all_of(by), !!is := dplyr::all_of(start)) %>%
x_a <- x |>
dplyr::select(dplyr::all_of(by), !!is := dplyr::all_of(start)) |>
dplyr::union_all(
x %>%
dplyr::select(dplyr::all_of(by), !!is := dplyr::all_of(end)) %>%
dplyr::mutate(!!is := as.Date(!!CDMConnector::dateadd(is, 1)))
) %>%
dplyr::distinct() %>%
x |>
dplyr::select(dplyr::all_of(by), !!is := dplyr::all_of(end)) |>
dplyr::mutate(!!is := as.Date(clock::add_days(.data[[is]], 1L)))
) |>
dplyr::distinct() |>
dplyr::compute(temporary = FALSE, name = tmpTable_1)

tmpTable_2 <- paste0(tmp, "_2")
x_a <- x_a %>%
dplyr::group_by(dplyr::across(dplyr::all_of(by))) %>%
dbplyr::window_order(.data[[is]]) %>%
dplyr::mutate(!!id := dplyr::row_number()) %>%
dbplyr::window_order() %>%
dplyr::ungroup() %>%
x_a <- x_a |>
dplyr::group_by(dplyr::across(dplyr::all_of(by))) |>
dbplyr::window_order(.data[[is]]) |>
dplyr::mutate(!!id := dplyr::row_number()) |>
dbplyr::window_order() |>
dplyr::ungroup() |>
dplyr::compute(temporary = FALSE, name = tmpTable_2)

tmpTable_3 <- paste0(tmp, "_3")
x_b <- x %>%
dplyr::select(dplyr::all_of(by), !!ie := dplyr::all_of(end)) %>%
x_b <- x |>
dplyr::select(dplyr::all_of(by), !!ie := dplyr::all_of(end)) |>
dplyr::union_all(
x %>%
dplyr::select(dplyr::all_of(by), !!ie := dplyr::all_of(start)) %>%
dplyr::mutate(!!ie := as.Date(!!CDMConnector::dateadd(ie, -1)))
) %>%
dplyr::distinct() %>%
dplyr::group_by(dplyr::across(dplyr::all_of(by))) %>%
dbplyr::window_order(.data[[ie]]) %>%
dplyr::mutate(!!id := dplyr::row_number() - 1) %>%
dbplyr::window_order() %>%
dplyr::ungroup() %>%
x |>
dplyr::select(dplyr::all_of(by), !!ie := dplyr::all_of(start)) |>
dplyr::mutate(!!ie := as.Date(clock::add_days(.data[[ie]], -1L)))
) |>
dplyr::distinct() |>
dplyr::group_by(dplyr::across(dplyr::all_of(by))) |>
dbplyr::window_order(.data[[ie]]) |>
dplyr::mutate(!!id := dplyr::row_number() - 1) |>
dbplyr::window_order() |>
dplyr::ungroup() |>
dplyr::compute(temporary = FALSE, name = tmpTable_3)

x <- x_a %>%
x <- x_a |>
dplyr::inner_join(
x_b,
by = c(by, id)
) %>%
) |>
dplyr::select(dplyr::all_of(by),
!!start := dplyr::all_of(is),
!!end := dplyr::all_of(ie)) %>%
!!end := dplyr::all_of(ie)) |>
dplyr::compute(temporary = FALSE, name = name)
}

Expand Down Expand Up @@ -330,6 +330,7 @@ joinOverlap <- function(cohort,
return(cohort)
}

gap <- as.integer(gap)
cdm <- omopgenerics::cdmReference(cohort)

start <- cohort |>
Expand All @@ -339,14 +340,8 @@ joinOverlap <- function(cohort,
dplyr::select(by, "date" := !!endDate) |>
dplyr::mutate("date_id" = 1)
if (gap > 0) {
end <- end %>%
dplyr::mutate("date" = as.Date(
!!CDMConnector::dateadd(
date = "date",
number = gap,
interval = "day"
)
))
end <- end |>
dplyr::mutate("date" = as.Date(clock::add_days(x = .data$date, n = gap)))
}
workingTbl <- omopgenerics::uniqueTableName()
x <- start |>
Expand All @@ -372,14 +367,8 @@ joinOverlap <- function(cohort,
dplyr::select(-"era_id") |>
dplyr::compute(temporary = FALSE, name = name)
if (gap > 0) {
x <- x %>%
dplyr::mutate(!!endDate := as.Date(
!!CDMConnector::dateadd(
date = endDate,
number = -gap,
interval = "day"
)
))
x <- x |>
dplyr::mutate(!!endDate := as.Date(clock::add_days(x = .data[[endDate]], n = -gap)))
}

x <- x |>
Expand Down Expand Up @@ -469,13 +458,13 @@ getIdentifier <- function(x,
getRandom <- function(n) {
sample(x = letters,
size = n,
replace = TRUE) %>% paste0(collapse = "")
replace = TRUE) |> paste0(collapse = "")
}
addNames <- function(cs) {
cols <- colnames(cs)[colnames(cs) != "cohort_definition_id"]
cs <- cs %>% dplyr::mutate("cohort_name" = NA_character_)
cs <- cs |> dplyr::mutate("cohort_name" = NA_character_)
for (col in cols) {
cs <- cs %>%
cs <- cs |>
dplyr::mutate(
"cohort_name" = dplyr::case_when(
.data[[col]] == 1 & is.na(.data$cohort_name) ~ .env$col,
Expand Down
60 changes: 30 additions & 30 deletions R/matchCohorts.R
Original file line number Diff line number Diff line change
Expand Up @@ -194,9 +194,9 @@ getNewCohort <- function(cohort, cohortId, control) {
name = temp_name,
table = dplyr::tibble("cohort_definition_id" = cohortId)
)
controls <- cdm[[temp_name]] %>%
controls <- cdm[[temp_name]] |>
dplyr::cross_join(
cdm[["person"]] %>%
cdm[["person"]] |>
dplyr::select("subject_id" = "person_id") |>
dplyr::inner_join(
cdm[["observation_period"]] |>
Expand All @@ -212,7 +212,7 @@ getNewCohort <- function(cohort, cohortId, control) {
dplyr::ungroup(),
by = "subject_id"
)
) %>%
) |>
dplyr::compute(name = control, temporary = FALSE)
cdm <- omopgenerics::dropTable(cdm, temp_name)

Expand Down Expand Up @@ -268,8 +268,8 @@ addMatchCols <- function(x, matchCols) {
dplyr::compute(name = omopgenerics::tableName(x), temporary = FALSE)
}
excludeIndividualsWithNoMatch <- function(cohort, groups, matchCols) {
cohort %>%
dplyr::inner_join(groups, by = c("cohort_definition_id", matchCols)) %>%
cohort |>
dplyr::inner_join(groups, by = c("cohort_definition_id", matchCols)) |>
dplyr::select(!dplyr::all_of(matchCols)) |>
dplyr::compute(name = tableName(cohort), temporary = FALSE) |>
omopgenerics::recordCohortAttrition("Exclude individuals that do not have any match")
Expand Down Expand Up @@ -302,20 +302,20 @@ excludeNoMatchedIndividuals <- function(cdm,
temporary = FALSE)

# Exclude individuals that do not have any match
cdm[[target]] <- cdm[[target]] %>%
cdm[[target]] <- cdm[[target]] |>
excludeIndividualsWithNoMatch(groups, matchCols)
cdm[[control]] <- cdm[[control]] %>%
cdm[[control]] <- cdm[[control]] |>
excludeIndividualsWithNoMatch(groups, matchCols)

return(cdm)
}

addRandPairId <- function(x) {
x %>%
dplyr::mutate("id" = stats::runif(n = dplyr::n())) %>%
dplyr::arrange(.data$id) %>%
dplyr::mutate("pair_id" = dplyr::row_number(), .by = "group_id") %>%
dplyr::select(-"id") %>%
x |>
dplyr::mutate("id" = stats::runif(n = dplyr::n())) |>
dplyr::arrange(.data$id) |>
dplyr::mutate("pair_id" = dplyr::row_number(), .by = "group_id") |>
dplyr::select(-"id") |>
dplyr::compute(name = omopgenerics::tableName(x), temporary = FALSE)
}
addClusterId <- function(x, u) {
Expand All @@ -333,37 +333,37 @@ clusterId <- function(x) {
}
infiniteMatching <- function(cdm, target, control) {
# Create pair id to perform a random match
cdm[[target]] <- cdm[[target]] %>% addRandPairId()
cdm[[control]] <- cdm[[control]] %>% addRandPairId()
cdm[[target]] <- cdm[[target]] |> addRandPairId()
cdm[[control]] <- cdm[[control]] |> addRandPairId()

cdm[[control]] <- cdm[[control]] %>%
cdm[[control]] <- cdm[[control]] |>
dplyr::inner_join(
# Calculate the maximum number of cases per group
cdm[[target]] %>%
dplyr::group_by(.data$group_id) %>%
cdm[[target]] |>
dplyr::group_by(.data$group_id) |>
dplyr::summarise(
"max_id" = max(.data$pair_id, na.rm = TRUE),
.groups = "drop"
),
by = c("group_id")
) %>%
) |>
# Calculate the maximum ratio per group
dplyr::mutate("pair_id" = ((.data$pair_id - 1) %% .data$max_id) + 1) %>%
dplyr::select(-"max_id") %>%
dplyr::mutate("pair_id" = ((.data$pair_id - 1) %% .data$max_id) + 1) |>
dplyr::select(-"max_id") |>
dplyr::compute(name = control, temporary = FALSE)

clusterId <- clusterId(cdm[[target]])
cdm[[control]] <- cdm[[control]] |> addClusterId(clusterId)
cdm[[target]] <- cdm[[target]] |> addClusterId(clusterId)

# assign cohort_start_date and cohort end date to controls
cdm[[control]] <- cdm[[control]] %>%
cdm[[control]] <- cdm[[control]] |>
dplyr::inner_join(
# Cohort start date and end date of cases
cdm[[target]] %>%
cdm[[target]] |>
dplyr::select("cluster_id", "index_date" = "cohort_start_date"),
by = c("cluster_id")
) %>%
) |>
dplyr::compute(name = control, temporary = FALSE)

return(cdm)
Expand Down Expand Up @@ -401,15 +401,15 @@ observationTarget <- function(cdm, target, control) {

checkRatio <- function(x, ratio) {
if (!is.infinite(ratio)) {
x <- x %>%
dplyr::mutate("id" = stats::runif(n = dplyr::n())) %>%
dplyr::group_by(.data$cluster_id) %>%
dplyr::arrange(.data$id) %>%
dplyr::filter(dplyr::row_number() <= .env$ratio) %>%
dplyr::ungroup() %>%
x <- x |>
dplyr::mutate("id" = stats::runif(n = dplyr::n())) |>
dplyr::group_by(.data$cluster_id) |>
dplyr::arrange(.data$id) |>
dplyr::filter(dplyr::row_number() <= .env$ratio) |>
dplyr::ungroup() |>
dplyr::arrange() |>
dplyr::select(-"id") |>
dplyr::compute(name = tableName(x), temporary = FALSE) %>%
dplyr::compute(name = tableName(x), temporary = FALSE) |>
omopgenerics::recordCohortAttrition("Exclude individuals to fulfil the ratio")
}
return(x)
Expand Down
Loading
Loading