Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

draft: add cumsum,cumproduct,cummin,cummax #293

Merged
merged 8 commits into from
Nov 21, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions openeo_processes_dask/process_implementations/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,10 @@
"add",
"_sum",
"_min",
"cumsum",
"cumproduct",
"cummin",
"cummax",
"_max",
"median",
"mean",
Expand Down Expand Up @@ -117,6 +121,58 @@ def _min(data, ignore_nodata=True, axis=None, keepdims=False):
return np.min(data, axis=axis, keepdims=keepdims)


def cumsum(data, ignore_nodata=True, axis=None):
nan_mask = np.isnan(data)

if ignore_nodata:
result = np.nancumsum(data, axis=axis)
else:
result = np.cumsum(data, axis=axis)

result[nan_mask] = np.nan
return result


def cumproduct(data, ignore_nodata=True, axis=None):
nan_mask = np.isnan(data)

if ignore_nodata:
result = np.nancumprod(data, axis=axis)
else:
result = np.cumprod(data, axis=axis)

result[nan_mask] = np.nan
return result


def cummin(data, ignore_nodata=True):
data = np.array(data)
nan_mask = np.isnan(data)

if ignore_nodata:
data_filled = np.where(nan_mask, np.inf, data)
result = np.minimum.accumulate(data_filled)
else:
result = np.minimum.accumulate(data)

result[nan_mask] = np.nan
return result


def cummax(data, ignore_nodata=True):
data = np.array(data)
nan_mask = np.isnan(data)

if ignore_nodata:
data_filled = np.where(nan_mask, -np.inf, data)
result = np.maximum.accumulate(data_filled)
else:
result = np.maximum.accumulate(data)

result[nan_mask] = np.nan
return result


def _max(data, ignore_nodata=True, axis=None, keepdims=False):
if ignore_nodata:
return np.nanmax(data, axis=axis, keepdims=keepdims)
Expand Down
134 changes: 134 additions & 0 deletions tests/test_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -257,3 +257,137 @@ def test_apply_kernel(temporal_interval, bounding_box, random_raster_data):
)

xr.testing.assert_equal(output_cube, input_cube)


# TODO: testing cummin


@pytest.mark.parametrize("size", [(6, 5, 30, 4)])
@pytest.mark.parametrize("dtype", [np.float32])
def test_apply_dimension_cumsum_process(
temporal_interval, bounding_box, random_raster_data, process_registry
):
input_cube = create_fake_rastercube(
data=random_raster_data,
spatial_extent=bounding_box,
temporal_extent=temporal_interval,
bands=["B02", "B03", "B04", "B08"],
backend="dask",
)

_process_cumsum = partial(
process_registry["cumsum"].implementation,
data=ParameterReference(from_parameter="data"),
)

output_cube_cumsum = apply_dimension(
data=input_cube,
process=_process_cumsum,
dimension="t",
).compute()

original_abs_sum = np.sum(np.abs(input_cube.data))

cumsum_total = np.sum(np.abs(output_cube_cumsum.data))

assert cumsum_total >= original_abs_sum


@pytest.mark.parametrize("size", [(6, 5, 30, 4)])
@pytest.mark.parametrize("dtype", [np.float32])
def test_apply_dimension_cumproduct_process(
temporal_interval, bounding_box, random_raster_data, process_registry
):
input_cube = create_fake_rastercube(
data=random_raster_data,
spatial_extent=bounding_box,
temporal_extent=temporal_interval,
bands=["B02", "B03", "B04", "B08"],
backend="dask",
)

_process_cumsum = partial(
process_registry["cumproduct"].implementation,
data=ParameterReference(from_parameter="data"),
)

output_cube_cumprod = apply_dimension(
data=input_cube,
process=_process_cumsum,
dimension="t",
).compute()

# TODO: Looking for better solution of following steps

original_data = np.abs(input_cube.data)
original_data[np.isnan(original_data)] = 0
original_abs_prod = np.sum(original_data)

cumprod_data = np.abs(output_cube_cumprod.data)
cumprod_data[np.isnan(cumprod_data)] = 0
cumprod_total = np.sum(cumprod_data)

assert cumprod_total >= original_abs_prod


@pytest.mark.parametrize("size", [(6, 5, 30, 4)])
@pytest.mark.parametrize("dtype", [np.float32])
def test_apply_dimension_cummax_process(
temporal_interval, bounding_box, random_raster_data, process_registry
):
input_cube = create_fake_rastercube(
data=random_raster_data,
spatial_extent=bounding_box,
temporal_extent=temporal_interval,
bands=["B02", "B03", "B04", "B08"],
backend="dask",
)

_process_cummax = partial(
process_registry["cummax"].implementation,
data=ParameterReference(from_parameter="data"),
)

output_cube_cummax = apply_dimension(
data=input_cube,
process=_process_cummax,
dimension="t",
).compute()

original_abs_max = np.max(input_cube.data, axis=0)
cummax_total = np.max(output_cube_cummax.data, axis=0)

assert np.all(cummax_total >= original_abs_max)


@pytest.mark.parametrize("size", [(6, 5, 30, 4)])
@pytest.mark.parametrize("dtype", [np.float32])
def test_apply_dimension_cummin_process(
temporal_interval, bounding_box, random_raster_data, process_registry
):
input_cube = create_fake_rastercube(
data=random_raster_data,
spatial_extent=bounding_box,
temporal_extent=temporal_interval,
bands=["B02", "B03", "B04", "B08"],
backend="dask",
)

_process_cummin = partial(
process_registry["cummin"].implementation,
data=ParameterReference(from_parameter="data"),
)

output_cube_cummin = apply_dimension(
data=input_cube,
process=_process_cummin,
dimension="t",
).compute()

print(input_cube.data.shape)
print(output_cube_cummin.data.shape)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove


original_abs_min = np.min(input_cube.data, axis=0)
cummin_total = np.min(output_cube_cummin.data, axis=0)

assert np.all(cummin_total <= original_abs_min)
ValentinaHutter marked this conversation as resolved.
Show resolved Hide resolved
32 changes: 32 additions & 0 deletions tests/test_math.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,3 +118,35 @@ def test_extrema():
dask_array = da.from_array(np.array(array_list))
result = extrema(dask_array, ignore_nodata=True, axis=0, keepdims=False)
assert np.array_equal(result_np, result.compute())


def test_cumproduct():
array_list = [1, 2, 3, np.nan, 3, 1]
result_np = [1, 2, 6, np.nan, 18, 18]

result = cumproduct(array_list)
assert np.array_equal(result_np, result, equal_nan=True)

ValentinaHutter marked this conversation as resolved.
Show resolved Hide resolved

def test_cumsum():
array_list = [1, 3, np.nan, 3, 1]
result_np = [1, 4, np.nan, 7, 8]

result = cumsum(array_list)
assert np.array_equal(result_np, result, equal_nan=True)


def test_cummin():
array_list = [5, 3, np.nan, 1, 5]
result_np = [5, 3, np.nan, 1, 1]

result = cummin(array_list)
assert np.array_equal(result_np, result, equal_nan=True)


def test_cummax():
array_list = [1, 3, np.nan, 5, 1]
result_np = [1, 3, np.nan, 5, 5]

result = cummax(array_list)
assert np.array_equal(result_np, result, equal_nan=True)
Loading