Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added costs as a column to tracking databases #664

Merged
merged 4 commits into from
Nov 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Changed

- `MultiBackendJobManager`: costs has been added as a column in tracking databases ([[#588](https://github.com/Open-EO/openeo-python-client/issues/588)])

### Removed

### Fixed
Expand Down
3 changes: 3 additions & 0 deletions openeo/extra/job_management.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,6 +207,7 @@ def start_job(
"cpu": _ColumnProperties(dtype="str"),
"memory": _ColumnProperties(dtype="str"),
"duration": _ColumnProperties(dtype="str"),
"costs": _ColumnProperties(dtype="float64"),
}

def __init__(
Expand Down Expand Up @@ -744,6 +745,8 @@ def _track_statuses(self, job_db: JobDatabaseInterface, stats: Optional[dict] =
for key in job_metadata.get("usage", {}).keys():
if key in active.columns:
active.loc[i, key] = _format_usage_stat(job_metadata, key)
if "costs" in job_metadata.keys():
active.loc[i, "costs"] = job_metadata.get("costs")

except OpenEoApiError as e:
# TODO: inspect status code and e.g. differentiate between 4xx/5xx
Expand Down
10 changes: 9 additions & 1 deletion openeo/rest/_testing.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,11 +225,19 @@ def _handle_get_job(self, request, context):
self.batch_jobs[job_id]["status"] = self._get_job_status(
job_id=job_id, current_status=self.batch_jobs[job_id]["status"]
)
return {
result = {
# TODO: add some more required fields like "process" and "created"?
"id": job_id,
"status": self.batch_jobs[job_id]["status"],
}
if self.batch_jobs[job_id]["status"] == "finished": # HACK some realistic values for a small job
result["costs"] = 123
result["usage"] = {
"cpu": {"unit": "cpu-seconds", "value": 1234.5},
"memory": {"unit": "mb-seconds", "value": 34567.89},
"duration": {"unit": "seconds", "value": 2345},
}
return result

def _handle_get_job_results(self, request, context):
"""Handler of `GET /job/{job_id}/results` (list batch job results)."""
Expand Down
54 changes: 36 additions & 18 deletions tests/extra/test_job_management.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
# httpretty avoids this specific problem because it mocks at the socket level,
# But I would rather not have two dependencies with almost the same goal.
import httpretty
import numpy as np
import pandas
import pandas as pd
import pytest
Expand Down Expand Up @@ -166,12 +167,15 @@ def test_basic(self, tmp_path, job_manager, job_manager_root_dir, sleep_mock):
}
)

assert [(r.id, r.status, r.backend_name) for r in pd.read_csv(job_db_path).itertuples()] == [
("job-2018", "finished", "foo"),
("job-2019", "finished", "foo"),
("job-2020", "finished", "bar"),
("job-2021", "finished", "bar"),
("job-2022", "finished", "foo"),
assert [
(r.id, r.status, r.backend_name, r.cpu, r.memory, r.duration, r.costs)
for r in pd.read_csv(job_db_path).itertuples()
] == [
("job-2018", "finished", "foo", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2019", "finished", "foo", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2020", "finished", "bar", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2021", "finished", "bar", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2022", "finished", "foo", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
]

# Check downloaded results and metadata.
Expand Down Expand Up @@ -204,6 +208,10 @@ def test_db_class(self, tmp_path, job_manager, job_manager_root_dir, sleep_mock,
assert len(result) == 5
assert set(result.status) == {"finished"}
assert set(result.backend_name) == {"foo", "bar"}
assert set(result.cpu) == {"1234.5 cpu-seconds"}
assert set(result.memory) == {"34567.89 mb-seconds"}
assert set(result.duration) == {"2345 seconds"}
assert set(result.costs) == {123}

@pytest.mark.parametrize(
["filename", "expected_db_class"],
Expand Down Expand Up @@ -254,12 +262,15 @@ def test_basic_threading(self, tmp_path, job_manager, job_manager_root_dir, slee
# TODO #645 how to collect stats with the threaded run_job?
assert sleep_mock.call_count > 10

assert [(r.id, r.status, r.backend_name) for r in pd.read_csv(job_db_path).itertuples()] == [
("job-2018", "finished", "foo"),
("job-2019", "finished", "foo"),
("job-2020", "finished", "bar"),
("job-2021", "finished", "bar"),
("job-2022", "finished", "foo"),
assert [
(r.id, r.status, r.backend_name, r.cpu, r.memory, r.duration, r.costs)
for r in pd.read_csv(job_db_path).itertuples()
] == [
("job-2018", "finished", "foo", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2019", "finished", "foo", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2020", "finished", "bar", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2021", "finished", "bar", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2022", "finished", "foo", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
]

# Check downloaded results and metadata.
Expand All @@ -283,6 +294,7 @@ def test_normalize_df(self):
"memory",
"duration",
"backend_name",
"costs",
]
)

Expand Down Expand Up @@ -333,12 +345,15 @@ def start_worker_thread():
)

# Also check that we got sensible end results in the job db.
assert [(r.id, r.status, r.backend_name) for r in pd.read_csv(job_db_path).itertuples()] == [
("job-2018", "finished", "foo"),
("job-2019", "finished", "foo"),
("job-2020", "finished", "bar"),
("job-2021", "finished", "bar"),
("job-2022", "error", "foo"),
results = pd.read_csv(job_db_path).replace({np.nan: None}) # np.nan's are replaced by None for easy comparison
assert [
(r.id, r.status, r.backend_name, r.cpu, r.memory, r.duration, r.costs) for r in results.itertuples()
] == [
("job-2018", "finished", "foo", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2019", "finished", "foo", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2020", "finished", "bar", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2021", "finished", "bar", "1234.5 cpu-seconds", "34567.89 mb-seconds", "2345 seconds", 123),
("job-2022", "error", "foo", None, None, None, None),
]

# Check downloaded results and metadata.
Expand Down Expand Up @@ -673,6 +688,7 @@ def test_initialize_from_df(self, tmp_path, db_class):
"memory",
"duration",
"backend_name",
"costs",
}

actual_columns = set(db_class(path).read().columns)
Expand Down Expand Up @@ -852,6 +868,7 @@ def test_initialize_from_df(self, tmp_path):
"memory",
"duration",
"backend_name",
"costs",
}

# Raw file content check
Expand Down Expand Up @@ -930,6 +947,7 @@ def test_initialize_from_df(self, tmp_path):
"memory",
"duration",
"backend_name",
"costs",
}

df_from_disk = ParquetJobDatabase(path).read()
Expand Down