Skip to content

Commit

Permalink
Remove direct estimagic dependencies to avoid circular imports (#6)
Browse files Browse the repository at this point in the history
  • Loading branch information
janosg authored May 22, 2023
1 parent 4bce6be commit 7042550
Show file tree
Hide file tree
Showing 11 changed files with 130 additions and 55 deletions.
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@ black = 1
filterwarnings = [
"ignore:delta_grad == 0.0", # UserWarning in test_poisedness.py
"ignore:Jupyter is migrating", # DeprecationWarning from jupyter client
"ignore:Noisy scalar functions are experimental",
]
markers = [
"wip: Tests that are work-in-progress.",
Expand Down
4 changes: 0 additions & 4 deletions src/tranquilo/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +0,0 @@
from tranquilo.tranquilo import tranquilo, tranquilo_ls


__all__ = ["tranquilo", "tranquilo_ls"]
2 changes: 1 addition & 1 deletion src/tranquilo/options.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ class FilterOptions(NamedTuple):
class SamplerOptions(NamedTuple):
distribution: str = None
hardness: float = 1
algorithm: str = "scipy_lbfgsb"
algorithm: str = "L-BFGS-B"
algo_options: dict = None
criterion: str = None
n_points_randomsearch: int = 1
Expand Down
29 changes: 23 additions & 6 deletions src/tranquilo/process_arguments.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,5 @@
import numpy as np

from estimagic.optimization.algo_options import (
CONVERGENCE_RELATIVE_CRITERION_TOLERANCE,
CONVERGENCE_RELATIVE_GRADIENT_TOLERANCE,
)
from tranquilo.acceptance_decision import get_acceptance_decider
from tranquilo.aggregate_models import get_aggregator
from tranquilo.bounds import Bounds
Expand Down Expand Up @@ -33,6 +29,7 @@
from tranquilo.sample_points import get_sampler
from tranquilo.solve_subproblem import get_subsolver
from tranquilo.wrap_criterion import get_wrapped_criterion
import warnings


def process_arguments(
Expand All @@ -51,8 +48,8 @@ def process_arguments(
convergence_absolute_criterion_tolerance=0.0,
convergence_absolute_gradient_tolerance=0.0,
convergence_absolute_params_tolerance=0.0,
convergence_relative_criterion_tolerance=CONVERGENCE_RELATIVE_CRITERION_TOLERANCE,
convergence_relative_gradient_tolerance=CONVERGENCE_RELATIVE_GRADIENT_TOLERANCE,
convergence_relative_criterion_tolerance=2e-9,
convergence_relative_gradient_tolerance=1e-8,
convergence_relative_params_tolerance=1e-8,
convergence_min_trust_region_radius=0.0,
# stopping options
Expand Down Expand Up @@ -90,6 +87,26 @@ def process_arguments(
infinity_handler="relative",
residualize=None,
):
# warning for things that do not work well yet
if noisy and functype == "scalar":
msg = (
"Noisy scalar functions are experimental and likely to give very "
"suboptimal results."
)
warnings.warn(msg)
if noisy and n_cores > 1:
msg = (
"Parallelization together with noisy functions is experimental and likely "
"to give very suboptimal results."
)
warnings.warn(msg)
if n_cores > 1 and functype == "scalar":
msg = (
"Parallelization together with scalar functions is experimental and likely "
"to give very suboptimal results."
)
warnings.warn(msg)

# process convergence options
conv_options = ConvOptions(
disable=bool(disable_convergence),
Expand Down
30 changes: 19 additions & 11 deletions src/tranquilo/sample_points.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,10 @@
from scipy.spatial.distance import pdist
from scipy.special import gammainc, logsumexp

import estimagic as em
from scipy.optimize import minimize, Bounds
from tranquilo.get_component import get_component
from tranquilo.options import SamplerOptions
import functools


def get_sampler(sampler, user_options=None):
Expand Down Expand Up @@ -241,8 +242,8 @@ def _optimal_hull_sampler(
criterion = "determinant" if n_points == 1 else "distance"

algo_options = {} if algo_options is None else algo_options
if "stopping_max_iterations" not in algo_options:
algo_options["stopping_max_iterations"] = 2 * n_params + 5
if "maxiter" not in algo_options:
algo_options["maxiter"] = 2 * n_params + 5

if existing_xs is not None:
# map existing points into unit space for easier optimization
Expand Down Expand Up @@ -302,15 +303,14 @@ def _optimal_hull_sampler(
if existing_xs_unit is None and n_points == 1:
opt_params = x0
else:
res = em.maximize(
criterion=func_dict[criterion],
params=x0,
algorithm=algorithm,
lower_bounds=-np.ones_like(x0),
upper_bounds=np.ones_like(x0),
algo_options=algo_options,
res = minimize(
switch_sign(func_dict[criterion]),
x0,
method=algorithm,
bounds=Bounds(-np.ones_like(x0), np.ones_like(x0)),
options=algo_options,
)
opt_params = res.params
opt_params = res.x

# Make sure the optimal sampling is actually better than the initial one with
# respect to the fekete criterion. This could be violated if the surrogate
Expand Down Expand Up @@ -464,3 +464,11 @@ def _project_onto_unit_hull(x, trustregion_shape):
norm = np.linalg.norm(x, axis=1, ord=order).reshape(-1, 1)
projected = x / norm
return projected


def switch_sign(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return -func(*args, **kwargs)

return wrapper
21 changes: 0 additions & 21 deletions src/tranquilo/tranquilo.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,8 @@
import functools
from functools import partial
from typing import NamedTuple

import numpy as np

from estimagic.decorators import mark_minimizer
from tranquilo.adjust_radius import adjust_radius
from tranquilo.filter_points import (
drop_worst_points,
Expand Down Expand Up @@ -513,25 +511,6 @@ def _is_converged(states, options):
return converged, msg


tranquilo = mark_minimizer(
func=partial(_tranquilo, functype="scalar"),
name="tranquilo",
primary_criterion_entry="value",
needs_scaling=True,
is_available=True,
is_global=False,
)

tranquilo_ls = mark_minimizer(
func=partial(_tranquilo, functype="least_squares"),
primary_criterion_entry="root_contributions",
name="tranquilo_ls",
needs_scaling=True,
is_available=True,
is_global=False,
)


def _concatenate_indices(first, second):
first = np.atleast_1d(first).astype(int)
second = np.atleast_1d(second).astype(int)
Expand Down
23 changes: 21 additions & 2 deletions src/tranquilo/wrap_criterion.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,6 @@

import numpy as np

from estimagic.batch_evaluators import process_batch_evaluator


def get_wrapped_criterion(criterion, batch_evaluator, n_cores, history):
"""Wrap the criterion function to do get parallelization and history handling.
Expand Down Expand Up @@ -66,3 +64,24 @@ def wrapper_criterion(eval_info):
)

return wrapper_criterion


def process_batch_evaluator(batch_evaluator="joblib"):
batch_evaluator = "joblib" if batch_evaluator is None else batch_evaluator

if callable(batch_evaluator):
out = batch_evaluator
elif isinstance(batch_evaluator, str):
if batch_evaluator == "joblib":
from estimagic.batch_evaluators import joblib_batch_evaluator as out
elif batch_evaluator == "pathos":
from estimagic.batch_evaluators import pathos_mp_batch_evaluator as out
else:
raise ValueError(
"Invalid batch evaluator requested. Currently only 'pathos' and "
"'joblib' are supported."
)
else:
raise TypeError("batch_evaluator must be a callable or string.")

return out
18 changes: 15 additions & 3 deletions tests/subsolvers/test_gqtpar_lambdas.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,18 @@
import estimagic as em
from estimagic.optimization.optimize import minimize
from estimagic.benchmarking.get_benchmark_problems import get_benchmark_problems
from tranquilo import tranquilo
from tranquilo.tranquilo import _tranquilo
from estimagic.decorators import mark_minimizer
from functools import partial


tranquilo = mark_minimizer(
func=partial(_tranquilo, functype="scalar"),
name="tranquilo",
primary_criterion_entry="value",
needs_scaling=True,
is_available=True,
is_global=False,
)


def test_gqtpar_lambdas():
Expand All @@ -13,7 +25,7 @@ def test_gqtpar_lambdas():
}
problem_info = get_benchmark_problems("more_wild")["freudenstein_roth_good_start"]

em.minimize(
minimize(
criterion=problem_info["inputs"]["criterion"],
params=problem_info["inputs"]["params"],
algo_options=algo_options,
Expand Down
2 changes: 1 addition & 1 deletion tests/test_fit_models.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import numpy as np
import pytest
from estimagic import first_derivative, second_derivative
from estimagic.differentiation.derivatives import first_derivative, second_derivative
from tranquilo.fit_models import _quadratic_features, get_fitter
from tranquilo.region import Region
from numpy.testing import assert_array_almost_equal, assert_array_equal
Expand Down
28 changes: 24 additions & 4 deletions tests/test_tranquilo.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,31 @@
import numpy as np
import pytest
from estimagic.optimization.optimize import minimize
from tranquilo.tranquilo import (
tranquilo,
tranquilo_ls,
)
from tranquilo.tranquilo import _tranquilo
from numpy.testing import assert_array_almost_equal as aaae
from estimagic.decorators import mark_minimizer
from functools import partial


tranquilo = mark_minimizer(
func=partial(_tranquilo, functype="scalar"),
name="tranquilo",
primary_criterion_entry="value",
needs_scaling=True,
is_available=True,
is_global=False,
)


tranquilo_ls = mark_minimizer(
func=partial(_tranquilo, functype="least_squares"),
primary_criterion_entry="root_contributions",
name="tranquilo_ls",
needs_scaling=True,
is_available=True,
is_global=False,
)


# ======================================================================================
# Test tranquilo end-to-end
Expand Down
27 changes: 25 additions & 2 deletions tests/test_visualize.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,30 @@
import pytest
from estimagic import get_benchmark_problems, minimize
from estimagic.optimization.optimize import minimize
from estimagic.benchmarking.get_benchmark_problems import get_benchmark_problems
from tranquilo.visualize import visualize_tranquilo
from tranquilo import tranquilo, tranquilo_ls
from tranquilo.tranquilo import _tranquilo
from estimagic.decorators import mark_minimizer
from functools import partial


tranquilo = mark_minimizer(
func=partial(_tranquilo, functype="scalar"),
name="tranquilo",
primary_criterion_entry="value",
needs_scaling=True,
is_available=True,
is_global=False,
)


tranquilo_ls = mark_minimizer(
func=partial(_tranquilo, functype="least_squares"),
primary_criterion_entry="root_contributions",
name="tranquilo_ls",
needs_scaling=True,
is_available=True,
is_global=False,
)

cases = []
algo_options = {
Expand Down

0 comments on commit 7042550

Please sign in to comment.