This project will no longer be maintained by Intel.
Intel has ceased development and contributions including, but not limited to, maintenance, bug fixes, new releases, or updates, to this project.
Intel no longer accepts patches to this project.
If you have an ongoing need to use this project, are interested in independently developing it, or would like to maintain patches for the open source software community, please create your own fork of this project.
The E2E sample implements aspects of smart city sensing, analytics and management features as follows:
- Camera Provisioning: Tag and calibrate cameras for installation locations, calibration parameters and other usage pattern information.
- Camera Discovery: Discover and register IP cameras on specified IP blocks. Registered cameras automatically participate into the analytics activities. See Sensor Simulation and Discovery for additional details.
- Recording: Record and manage segmented camera footage for preview or review (at a later time) purpose.
- Analytics: Perform analytics on the live/recorded camera streams. Latency-sensitive analytics are performed on Edge while others are on cloud.
- Triggers and Alerts: Manage triggers on analytics data. Respond with actions on triggered alerts.
- Smart Upload and Archive: Transcode and upload only critical data to cloud for archival or further offline analysis.
- Stats: Calculate statistics for planning/monitoring purpose on analytical data.
- UI: Present above data to users/administrators/city planners.
The sample implements the Smart-City traffic
and stadium
scenarios. The traffic
scenario measures vehicle/pedestrian flow for planning purpose. The stadium
scenario focuses on different access control techniques, including entrance people counting, service-point queue counting, and stadium seating zone crowd counting.
Traffic | Stadium |
---|---|
![]() |
![]() |
The sample is powered by the following OpenVisualCloud software stacks:
- Edge Low-latency Analytics:
- The GStreamer-based media analytics stack is used for object detection, people-counting, queue-counting and crowd-counting on camera streams. The software stack is optimized for Intel® Xeon® Scalable Processors.
- Smart Upload with Transcoding:
- The FFmpeg-based media transcoding stack is used to transcode recorded content before uploading to cloud. The software stack is optimized for Intel Xeon Scalable Processors.
-
Time Zone: Check that the timezone setting of your host machine is correctly configured. Timezone is used during build. If you plan to run the sample on a cluster of machines managed by Docker Swarm or Kubernetes, please make sure to synchronize time among the manager/master node and worker nodes.
-
Build Tools: Install
cmake
,make
,m4
,wget
andgawk
if they are not available on your system. -
Docker Engine:
- Install docker engine. Minimum version required:
17.05
. Make sure you setup docker to run as a regular user. - Setup docker swarm, if you plan to deploy through docker swarm. See Docker Swarm Setup for additional setup details.
- Setup Kubernetes, if you plan to deploy through Kubernetes. See Kubernetes Setup for additional setup details.
- Setup docker proxy as follows if you are behind a firewall:
- Install docker engine. Minimum version required:
sudo mkdir -p /etc/systemd/system/docker.service.d
printf "[Service]\nEnvironment=\"HTTPS_PROXY=$https_proxy\" \"NO_PROXY=$no_proxy\"\n" | sudo tee /etc/systemd/system/docker.service.d/proxy.conf
sudo systemctl daemon-reload
sudo systemctl restart docker
Use the following commands to build the sample. By default, the sample builds to the traffic
scenario. To enable the stadium
scenario, use cmake -DSCENARIO=stadium ..
. See also: Build Options.
mkdir build
cd build
cmake ..
make
Use the following commands to start/stop services via docker swarm:
make update # optional for private registry
make start_docker_swarm
make stop_docker_swarm
See also: Docker Swarm Setup.
Use the following commands to start/stop Kubernetes services:
make update # optional for private registry
make start_kubernetes
make stop_kubernetes
See also: Kubernetes Setup.
Launch your browser and browse to https://<hostname>
for the sample UI.
- For Kubernetes/Docker Swarm,
<hostname>
is the hostname of the manager/master node. - If you see a browser warning of self-signed certificate, please accept it to proceed to the sample UI.