Skip to content

Oreko/popfot-implementation

Repository files navigation

A fast and portable C++14 library for Oblivious Transfer extension (OTe). The primary design goal of this library to obtain high performance while being easy to use. This library currently implements:

  • The semi-honest 1-out-of-2 OT [IKNP03].
  • The semi-honest 1-out-of-2 Silent OT [BCGIKRS19].
  • The semi-honest 1-out-of-2 Delta-OT [IKNP03],[BLNNOOSS15].
  • The semi-honest 1-out-of-N OT [KKRT16].
  • The malicious secure 1-out-of-2 OT [KOS15].
  • The malicious secure 1-out-of-2 Delta-OT [KOS15],[BLNNOOSS15].
  • The malicious secure 1-out-of-N OT [OOS16].
  • The malicious secure approximate K-out-of-N OT [RR16].
  • The malicious secure 1-out-of-2 base OT [NP01].
  • The malicious secure 1-out-of-2 base OT [CO15] (Faster Linux ASM version disabled by default).
  • The malicious secure 1-out-of-2 base OT [MR19]

Introduction

This library provides several different classes of OT protocols. First is the base OT protocol of Naor Pinkas [NP01]. This protocol bootstraps all the other OT extension protocols. Within the OT extension protocols, we have 1-out-of-2, 1-out-of-N and K-out-of-N, both in the semi-honest and malicious settings.

All implementations are highly optimized using fast SSE instructions and vectorization to obtain optimal performance both in the single and multi-threaded setting. See the Performance section for a comparison between protocols and to other libraries.

Networking can be performed using both the sockets provided by the library and external socket classes. See the networking tutorial for an example.

Example Code

A minimal working example showing how to perform n OTs using the IKNP protocol.

void minimal()
{
    // Setup networking. See cryptoTools\frontend_cryptoTools\Tutorials\Network.cpp
    IOService ios;
    Channel senderChl = Session(ios, "localhost:1212", SessionMode::Server).addChannel();
    Channel recverChl = Session(ios, "localhost:1212", SessionMode::Client).addChannel();

    // The number of OTs.
    int n = 100;

    // The code to be run by the OT receiver.
    auto recverThread = std::thread([&]() {
        PRNG prng(sysRandomSeed());
        IknpOtExtReceiver recver;

        // Choose which messages should be received.
        BitVector choices(n);
        choices[0] = 1;
        //...

        // Receive the messages
        std::vector<block> messages(n);
        recver.receiveChosen(choices, messages, prng, recverChl);

        // messages[i] = sendMessages[i][choices[i]];
    });

    PRNG prng(sysRandomSeed());
    IknpOtExtSender sender;

    // Choose which messages should be sent.
    std::vector<std::array<block, 2>> sendMessages(n);
    sendMessages[0] = { toBlock(54), toBlock(33) };
    //...

    // Send the messages.
    sender.sendChosen(sendMessages, prng, senderChl);
    recverThread.join();
}

Performance

The running time in seconds for computing n=224 OTs on a single Intel Xeon server (2 36-cores Intel Xeon CPU E5-2699 v3 @ 2.30GHz and 256GB of RAM) as of 11/16/2016. All timings shown reflect a "single" thread per party, with the expection that network IO in libOTe is performed in the background by a separate thread.

Type Security Protocol libOTe (SHA1/AES) Encrypto Group (SHA256) Apricot (AES-hash) OOS16 (blake2) emp-toolkit (AES-hash)
1-out-of-N (N=276) malicious OOS16 10.6 / 9.2 ~ ~ 24** ~
1-out-of-N (N=2128) passive KKRT16 9.2 / 6.7 ~ ~ ~ ~
1-out-of-2 Delta-OT malicious KOS15 1.9* ~ ~ ~ ~
1-out-of-2 Delta-OT passive KOS15 1.7* ~ ~ ~ ~
1-out-of-2 malicious ALSZ15 ~ 17.3 ~ ~ 10
1-out-of-2 malicious KOS15 3.9 / 0.7 ~ 1.1 ~ 2.9
1-out-of-2 passive IKNP03 3.7 / 0.6 11.3 0.6 ~ 2.7
1-out-of-2 Base malicious CO15 1,592/~ ~ ~ ~ ~
1-out-of-2 Base malicious NP00 12,876/~ ~ ~ ~ ~

Install

The library is cross platform and has been tested on Windows, Mac and Linux. There is one mandatory dependency on Boost 1.69 (networking), and two optional dependencies on libsodium or SimplestOT (Unix only) for Base OTs. The Moeller POPF Base OTs additionally require the noclamp option for Montgomery curves, which is currently only in a fork of libsodium. Any or all of these dependenies can be enabled. See below.

Windows

In Powershell, this will set up the project

git clone --recursive https://github.com/osu-crypto/libOTe.git
cd libOTe/cryptoTools/thirdparty/win
getBoost.ps1 
cd ../../..
libOTe.sln

Not all protocols will be built by default. Which protocol are built is controlled by the libOTe/config.h file. Manually edit this file to enable the desired protocol.

To see all the command line options, execute the program frontend.exe.

Boost and visual studio 2017: If boost does not build with visual studio 2017 follow these instructions.

Linux / Mac

In short, this will build the project

git clone --recursive https://github.com/osu-crypto/libOTe.git
cd libOTe/cryptoTools/thirdparty/linux
bash boost.get
cd ../../..
cmake . -DENABLE_XXX=ON
make

where ENABLE_XXX should be replaced by ENABLE_IKNP, ENABLE_KOS, ... depending on which protocol(s) should be enabled. See the output of cmake . for a complete list. You will also need to enable one one of the base OT protocols (see below). The libraries will be placed in libOTe/lib and the binary frontend_libOTe will be placed in libOTe/bin To see all the command line options, execute the program

./bin/frontend_libOTe

Enable Base OTs using:

  • cmake . -DENABLE_SODIUM=ON: Build the library with integration to the libsodium library. If libsodium is installed in a prefix, rather than globally, tell cmake where to look for it with
PKG_CONFIG_PATH=/path/to/folder_containing_libsodium.pc cmake . -DENABLE_SODIUM=ON
  • Linux Only: cmake . -DENABLE_SIMPLESTOT_ASM=ON: Build the library with integration to the SimplestOT library implementing a base OT.

Other Options: Several other compile time options exists. See the output of cmake . for a complete list.

Note: In the case boost is already installed, the steps cd libOTe/cryptoTools/thirdparty/linux; bash boost.get can be skipped and CMake will attempt to find them instead. Boost is found with the CMake findBoost package and libsodium is found with the pkg_check_modules(libsodium) command. If there is a version mismatch then you will still need to run the provided boost build script.

Linking

You can either make install on linux or link libOTe's source tree. In the latter case, you will need to include the following:

  1. .../libOTe
  2. .../libOTe/cryptoTools
  3. .../libOTe/cryptoTools/thirdparty/linux/boost

and link:

  1. .../libOTe/bin/liblibOTe.a
  2. .../libOTe/bin/libcryptoTools.a
  3. .../libOTe/bin/libSimplestOT.a (if enabled)
  4. .../libOTe/bin/libKyberOT.a (if enabled)
  5. .../libOTe/cryptoTools/thirdparty/linux/boost/stage/lib/libboost_system.a
  6. .../libOTe/cryptoTools/thirdparty/linux/boost/stage/lib/libboost_thread.a

Note: On windows the linking paths follow a similar pattern.

Help

Contact Peter Rindal [email protected] for any assistance on building or running the library.

Citing

Spread the word!

@misc{libOTe,
    author = {Peter Rindal},
    title = {{libOTe: an efficient, portable, and easy to use Oblivious Transfer Library}},
    howpublished = {\url{https://github.com/osu-crypto/libOTe}},
}

License

This project has been placed in the public domain. As such, you are unrestricted in how you use it, commercial or otherwise. However, no warranty of fitness is provided. If you found this project helpful, feel free to spread the word and cite us.

Citation

[IKNP03] - Yuval Ishai and Joe Kilian and Kobbi Nissim and Erez Petrank, Extending Oblivious Transfers Efficiently.

[KOS15] - Marcel Keller and Emmanuela Orsini and Peter Scholl, Actively Secure OT Extension with Optimal Overhead. eprint/2015/546

[OOS16] - Michele Orrù and Emmanuela Orsini and Peter Scholl, Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection. eprint/2016/933

[KKRT16] - Vladimir Kolesnikov and Ranjit Kumaresan and Mike Rosulek and Ni Trieu, Efficient Batched Oblivious PRF with Applications to Private Set Intersection. eprint/2016/799

[RR16] - Peter Rindal and Mike Rosulek, Improved Private Set Intersection against Malicious Adversaries. eprint/2016/746

[BLNNOOSS15] - Sai Sheshank Burra and Enrique Larraia and Jesper Buus Nielsen and Peter Sebastian Nordholt and Claudio Orlandi and Emmanuela Orsini and Peter Scholl and Nigel P. Smart, High Performance Multi-Party Computation for Binary Circuits Based on Oblivious Transfer. eprint/2015/472

[ALSZ15] - Gilad Asharov and Yehuda Lindell and Thomas Schneider and Michael Zohner, More Efficient Oblivious Transfer Extensions with Security for Malicious Adversaries. eprint/2015/061

[NP01] - Moni Naor, Benny Pinkas, Efficient Oblivious Transfer Protocols.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published