Skip to content

Commit

Permalink
Merge pull request GEO-BON#111 from GEO-BON/maxent_pipeline_metadata
Browse files Browse the repository at this point in the history
updated pipeline description
  • Loading branch information
glaroc authored Oct 6, 2023
2 parents 67410ce + a1c99c2 commit ca81eee
Showing 1 changed file with 95 additions and 39 deletions.
134 changes: 95 additions & 39 deletions pipelines/SDM/SDM_maxEnt_outputs.json
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,11 @@
"data": {
"type": "options",
"value": "bootstrap",
"options": ["bootstrap", "crossvalidation", "none"]
"options": [
"bootstrap",
"crossvalidation",
"none"
]
}
},
{
Expand Down Expand Up @@ -133,7 +137,12 @@
"dragHandle": ".dragHandle",
"data": {
"type": "float[]",
"value": [-2316297, -1971146, 1015207, 1511916]
"value": [
-2316297,
-1971146,
1015207,
1511916
]
}
},
{
Expand Down Expand Up @@ -215,7 +224,13 @@
"data": {
"type": "options",
"value": "vif.cor",
"options": ["vif.cor", "vif.step", "pearson", "spearman", "kendall"]
"options": [
"vif.cor",
"vif.step",
"pearson",
"spearman",
"kendall"
]
}
},
{
Expand All @@ -229,7 +244,11 @@
"data": {
"type": "options",
"value": "pearson",
"options": ["pearson", "spearman", "kendall"]
"options": [
"pearson",
"spearman",
"kendall"
]
}
},
{
Expand Down Expand Up @@ -293,7 +312,12 @@
"data": {
"type": "options",
"value": "bbox",
"options": ["box", "mcp", "buffer", "bbox"]
"options": [
"box",
"mcp",
"buffer",
"bbox"
]
}
},
{
Expand Down Expand Up @@ -341,7 +365,11 @@
"dragHandle": ".dragHandle",
"data": {
"type": "text[]",
"value": ["L", "LQ", "LQHP"]
"value": [
"L",
"LQ",
"LQHP"
]
}
},
{
Expand All @@ -354,7 +382,11 @@
"dragHandle": ".dragHandle",
"data": {
"type": "float[]",
"value": [0.5, 1, 2]
"value": [
0.5,
1,
2
]
}
},
{
Expand All @@ -368,7 +400,11 @@
"data": {
"type": "options",
"value": "AUC",
"options": ["p10", "AIC", "AUC"]
"options": [
"p10",
"AIC",
"AUC"
]
}
},
{
Expand All @@ -382,7 +418,12 @@
"data": {
"type": "options",
"value": "lat_lon",
"options": ["lat_lon", "lon_lat", "lon_lon", "lat_lat"]
"options": [
"lat_lon",
"lon_lat",
"lon_lon",
"lat_lat"
]
}
},
{
Expand Down Expand Up @@ -419,7 +460,9 @@
"dragHandle": ".dragHandle",
"data": {
"type": "text[]",
"value": ["Acer saccharum"]
"value": [
"Acer saccharum"
]
}
},
{
Expand Down Expand Up @@ -840,7 +883,12 @@
"label": "bbox",
"description": "Vector of float, bbox coordinates of the bbox in the order xmin, ymin, xmax, ymax",
"type": "float[]",
"example": [-2316297, -1971146, 1015207, 1511916]
"example": [
-2316297,
-1971146,
1015207,
1511916
]
},
"data>heatmapFromSTAC.yml@67|taxa": {
"description": "taxonomic group to retrieve GBIF heatmap",
Expand All @@ -861,7 +909,10 @@
"description": "Source of the data (One of gbif_pc - Planetary computer or gbif_api - GBIF Download API)",
"label": "Data source",
"type": "options",
"options": ["gbif_pc", "gbif_api"],
"options": [
"gbif_pc",
"gbif_api"
],
"example": "gbif_api"
},
"data>pyLoadObservations>pyLoadObservations.yml@96|min_year": {
Expand Down Expand Up @@ -899,13 +950,16 @@
"description": "Vector of strings, collection name followed by '|' followed by item id",
"label": "collections_items",
"type": "text[]",
"example": ["chelsa-clim|bio1", "chelsa-clim|bio2"]
"example": [
"chelsa-clim|bio1",
"chelsa-clim|bio2"
]
},
"data>loadFromStac.yml@119|spatial_res": {
"description": "Integer, spatial resolution of the rasters",
"label": "spatial resolution",
"type": "float",
"example": 1000.0
"example": 1000
},
"data>loadFromStac.yml@119|mask": {
"description": "Shapefile, used to mask the output rasters",
Expand All @@ -916,50 +970,51 @@
"label": "Taxa list",
"description": "Array of taxa values",
"type": "text[]",
"example": ["Acer saccharum"]
"example": [
"Acer saccharum"
]
}
},
"outputs": {
"pipeline@121": {
"label": "Species name",
"description": "Species for which the distribution model is generated",
"weight": 1
"SDM>rangePredictions.yml@68|range_predictions": {
"description": "Variability of predictions based on range method",
"label": "Variability of predictions",
"type": "image/tiff;application=geotiff",
"weight": 6
},
"SDM>runMaxent.yml@108|sdm_pred": {
"description": "Model predictions from Maxent algorithm",
"label": "Predictions",
"type": "image/tiff;application=geotiff",
"range": [
0,
1
],
"weight": 5
},
"pipeline@121": {},
"filtering>cleanCoordinates.yml@34|clean_presence": {
"description": "Occurrences from GBIF after cleaning",
"label": "Presences",
"type": "text/tab-separated-values",
"weight": 2
},
"data>heatmapFromSTAC.yml@67|raster": {
"description": "Heatmap of GBIF occurences for plants used for bias correction",
"label": "Density of GBIF occurrences",
"type": "image/tiff;application=geotiff",
"weight": 4
},
"SDM>removeCollinearity.yml@97|rasters_selected": {
"description": "Environmental layers used as predictors in species distribution modeling",
"label": "Environmental predictors",
"type": "image/tiff;application=geotiff[]",
"weight": 3
},
"SDM>runMaxent.yml@108|sdm_pred": {
"description": "Model predictions from Maxent algorithm",
"label": "Predictions",
"type": "image/tiff;application=geotiff",
"range": [0, 1],
"weight": 5
},
"SDM>rangePredictions.yml@68|range_predictions": {
"description": "Variability of predictions based on range method",
"label": "Variability of predictions",
"data>heatmapFromSTAC.yml@67|raster": {
"description": "Heatmap of GBIF occurences for plants used for bias correction",
"label": "Density of GBIF occurrences",
"type": "image/tiff;application=geotiff",
"weight": 6
"weight": 4
}
},
"metadata": {
"name": "Species distribution modeling with Maxent",
"description": "This pipeline generates predictions for a species distribution model using the Maxent algorithm. Bias correction is achieved using random pseudo-absences throught the region of interest. A variance map to represent the prediction uncertainty is generated through bootstraping.",
"description": "This pipeline generates predictions for a species distribution model using the Maxent algorithm. Several background methods are possible, including randomly distributed pseudo-absences throughout the region, background thickening (Vollering et al. 2019, [https://doi.org/10.1111/ecog.04503] and target-group background selection (Phillips et al. 2009, [https://doi.org/10.1890/07-2153.1]). Bias correction is achieved using the target-group background selection method. A variance map to represent the prediction uncertainty is generated through bootstraping.",
"author": [
{
"name": "Sarah Valentin",
Expand All @@ -970,10 +1025,11 @@
"identifier": "https://orcid.org/0000-0002-5967-9156"
},
{
"name": "François Rousseu"
"name": "François Rousseu",
"identifier": "https://orcid.org/0000-0002-2400-2479"
}
],
"license": "MIT",
"external_link": "https://github.com/GEO-BON/biab-2.0/blob/main/scripts/SDM/runMaxent.R"
}
}
}

0 comments on commit ca81eee

Please sign in to comment.