Skip to content

Official Implementation of MICCAI 2024 paper "Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection"

License

Notifications You must be signed in to change notification settings

PJLallen/D2GPLand

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

63 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

D2GPLand [MICCAI'24][Oral, Finalist]

Official Implementation of MICCAI-2024 Oral paper "Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection".

Jialun Pei, Ruize Cui, Yaoqian Li, Weixin Si, Jing Qin, and Pheng-Ann Heng

👀 [Paper]; [Official Version]

Contact: [email protected], [email protected]

🔧 Environment preparation

The code is tested on python 3.9.19, pytorch 2.0.1, and CUDA 11.7, change the versions below to your desired ones.

  1. Clone repository:
git clone https://github.com/PJLallen/D2GPLand.git

cd D2GPLand
  1. Set up anaconda environment:
# Create D2GPLand anaconda environment from YAML.file
conda env create -f D2GPLand.yaml
# Activate environment
conda activate D2GPLand

📈 Dataset preparation

💥 Download proposed L3D dataset

Register datasets

Change the path of the datasets as:

DATASET_ROOT = 'D2GPLand/L3D/'
TRAIN_PATH = os.path.join(DATASET_ROOT, 'Train/')
TEST_PATH = os.path.join(DATASET_ROOT, 'Test/')
VAL_PATH = os.path.join(DATASET_ROOT, 'Val/')

🚀 Pre-trained weights

D2GPLand with SAM-b and ResNet-34: Google Drive

⚙️ Usage

Train

python train.py --data_path {PATH_TO_DATASET} \
--batch_size 4 --lr 1e-4 --decay_lr 1e-6 --epoch 60

Please replace {PATH_TO_DATASET} to your own dataset dir

Eval

python test.py --model_path {PATH_TO_THE_MODEL_WEIGHTS} \
  --prototype_path {PATH_TO_THE_PROTOTYPE_WEIGHTS} \
  --data_path {PATH_TO_DATASET}
  • {PATH_TO_THE_MODEL_WEIGHTS}: please put the pre-trained model weights here
  • {PATH_TO_THE_PROTOTYPE_WEIGHTS}: please put the pre-trained prototype weights here
  • {PATH_TO_DATASET}: please put the dataset dir here

Acknowledgement

This work is based on:

Thanks them for their great work!

📚 Citation

If this helps you, please cite this work:

@inproceedings{pei2024land,
  title={Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection},
  author={Pei, Jialun and Cui, Ruize and Li, Yaoqian and Si, Weixin and Qin, Jing and Heng, Pheng-Ann},
  booktitle={MICCAI},
  year={2024},
  organization={Springer}
}

About

Official Implementation of MICCAI 2024 paper "Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages