Skip to content

Commit

Permalink
修复链接错误
Browse files Browse the repository at this point in the history
Affected files:
微积分/微分/函数的微分.md
  • Loading branch information
Cyletix committed Feb 4, 2025
1 parent 24c0f08 commit fe31adf
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion 微积分/微分/函数的微分.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ $$\Delta y=A\Delta x+o(\Delta x)$$
当 $f'(x_0)\neq 0$ 时,有
$$\displaystyle \lim_{\Delta x\to 0}\frac{\Delta y}{dy}=\lim_{\Delta x\to 0}\frac{\Delta y}{f'(x_0)\Delta x}=\frac{1}{f'(x_0)}\lim_{x\to 0}\frac{\Delta y}{\Delta x}=1$$
从而,当 $\Delta x\to0$ 时,$\Delta y$ 与 $dy$ 是等价无穷小
于是由[无穷小的比较](无穷.md##无穷小的比较定理)可知,这时有 $\Delta y=dy+o(dy)$, 即 $dy$ 是 $\Delta y$ 的[主部](无穷.md#主部).
于是由[[无穷小的比较]]可知,这时有 $\Delta y=dy+o(dy)$, 即 $dy$ 是 $\Delta y$ 的[主部](无穷.md#主部).
又由于 $dy=f'(x_0)\Delta x$ 是 $\Delta x$ 的线性函数,所以在 $f'(x_0)\neq0$ 的条件下,我们说 $dy$ 是 $\Delta y$ 的线性主部(当 $\Delta x\to 0$)。

于是我们得到结论:
Expand Down

0 comments on commit fe31adf

Please sign in to comment.