Skip to content

Deep reinforcement learning for UAV in Gazebo simulation environment

Notifications You must be signed in to change notification settings

PX4-Gazebo-Simulation/drl_uav

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

Deep reinforcement learning for UAV in Gazebo simulation environment

Youtube:

maunal control: https://www.youtube.com/watch?v=9zLjYLtHdPQ

training: https://www.youtube.com/watch?v=zbejm5uHPt8

Environment:

Gazebo & pixhawk & ROS SITL(software in the loop) simulation:

DRL:

  • state = [Pos_z, Vel_z, Thrust]

  • action = {0, 1, -1}

    // 0: decrease thrust;

    // 1: increase thrust;

    // -1: environment needs to be restarted(manually selected)!

  • reward:

    if(19.7 < Pos_z < 20.3) reward = 1

    else reward = 0

  • Deep Network: 3 full connection layers

Destination:

UAV hovering at the altitude of 20m.

Requirements:

Pixhawk & Gazebo

ROS

Tensorflow

keras

How to build the project

cd $HOME
mkdir src
cd ~/src
git clone https://github.com/PX4-Gazebo-Simulation/Firmware.git
cd Firmware
make px4fmu-v4_default
cd ~/src
mkdir -p mavros_ws/src
cd mavros_ws
catkin_init_workspace
cd src
git clone -b uavcomp https://github.com/PX4-Gazebo-Simulation/mavros.git
git clone -b uavcomp https://github.com/PX4-Gazebo-Simulation/mavlink
cd ..
catkin build
cd ~/src
mkdir -p attitude_controller/src
cd attitude_controller
catkin_init_workspace
cd src
git clone -b flight_test https://github.com/PX4-Gazebo-Simulation/state_machine.git
cd ..
catkin build
cd ~/src
mkdir -p DRL_node_ROS/src
cd DRL_node_ROS
catkin_init_workspace
cd src
git clone https://github.com/PX4-Gazebo-Simulation/drl_uav.git
cd ..
catkin build

How to run UAV_DRL in Gazebo environment

(talker.py)

1. run pixhawk connection(MAVROS)

source ~/src/mavros_ws/devel/setup.bash
roslaunch mavros px4.launch fcu_url:="udp://:[email protected]:14557"

2. run pixhawk&gazebo

cd ~/src/Firmware
make posix_sitl_default gazebo

3. run state_machine: in branch flight_test

source ~/src/attitude_controller/devel/setup.bash
rosrun state_machine offb_simulation_test

4. switch pixhawk to offboard mode

source ~/src/mavros_ws/devel/setup.bash
rosrun mavros mavsafety arm
rosrun mavros mavsys mode -c OFFBOARD

5. run DRL

source ~/src/DRL_node_ROS/devel/setup.bash
rosrun drl_uav talker.py

Constraints

1. Gazebo environment

Thrust: [0.40, 0.78]

Vel_z: [-3.0, 3.0]

Pos_z: [10, 30](for training; restart the system if current altitude is out of range)

2. UAV_DRL

if vel_z > 3.0 => force action=0(increase thrust)

if vel_z < -3.0 => force action=1(decrease thrust)

Others

1. time delay of restart between pixhawk and DRL

~1.14s

About

Deep reinforcement learning for UAV in Gazebo simulation environment

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published