This repository contains the code for the Data Centric Approach to SemEval-2024 Task 2: Biomedical Natural Language Inference in Clinical Trials.
This project is conducted by Anna Barwig, Pingjun Hong, and Shijia Zhou under the structure of the seminar Biomodical Natural Language Processing at LMU.
- Python >= 3.10
- PyTorch >= 2.1
- NumPy >= 1.23
- datasets >= 2.16
- scikit-learn
- transformers
- pandas
- wandb
- pickle
Please download the necessary pre-trained model from huggingface
DeBERTa-Base: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
Flan-T5-Base: google/flan-t5-base
DeBERTa Pipeline: DeBERTa.ipynb
Flan Pipeline: flan_t5_base.ipynb
Evidence Retrieval Documentations
The evidence retrieval documentation are saved under the evidence retrieval
repository:
- Evidence Retrieval for DeBERTa:
evidence_retrieval_DeBERTa.xlsx
- Evidence Retrieval for Flan:
evidence_retrieval_Flan.xlsx
Annotators
- DeBERTa instances: Anna Barwig, Pingjun Hong
- Flan instances: Pingjun Hong, Shijia Zhou
- Code for data selection:
data_selection_for_generation_round.ipynb
- Statements generation:
data_statement_generation.xlsx
- Statements generated by: Anna Barwig, Pingjun Hong, Shijia Zhou
- Cross-checked by: Anna Barwig, Pingjun Hong, Shijia Zhou
- New data set for model update:
new_instances.json
The final predictions on test set are saved under the predictions
repository:
- Predictions on test set of Flan:
predictions_Flan
- Predictions on test set of DeBERTa (without classification boundary modification):
predictions_DeBERTa
- Predictions on test set of DeBERTa (classification boundary modification 3:7):
predictions_DeBERTa_37
- Predictions on test set of DeBERTa (classification boundary modification 4:6):
predictions_DeBERTa_46
The corresponding scores are saved under the results
repository:
- Results on test set of Flan:
scores_Flan
- Results on test set of DeBERTa (without classification boundary modification):
scores_DeBERTa
- Results on test set of DeBERTa (classification boundary modification 3:7):
scores_DeBERTa_37
- Results on test set of DeBERTa (classification boundary modification 4:6):
scores_DeBERTa_46