Skip to content

PolitoInc/yarGen

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

yarGen

Join the chat at https://gitter.im/Neo23x0/yarGen

A Rule Generator for Yara Rules

Florian Roth, July 2015

yarGen is a generator for Yara rules. The reason why I developed another Yara rule generator was a special use case in which I had a directory full of hackware samples for which I had to write Yara rules.

What does yarGen do?

The main principle is the creation of yara rules from strings found in malware files while removing all strings that also appear in goodware files.

Since version 0.15.0 yarGen supports opcode string elements extracted from the .text sections of PE files. During database creation it splits the .text sections with the regex [\x00]{3,} and takes the first 16 bytes of each part to build an opcode database from goodware PE files. During rule creation on sample files it compares the goodware opcodes with the opcodes extracted from the malware samples and removes all opcodes that also appear in the goodware database. (there is no further magic in it yet - no XOR loop detection etc.)

Since version 0.14.0 it uses naive-bayes-classifier by Mustafa Atik and Nejdet Yucesoy in order to classify the string and detect useful words instead of compression/encryption garbage.

Since version 0.12.0 yarGen does not completely remove the goodware strings from the analysis process but includes them with a very low score. The rules will be included if no better strings can be found and marked with a comment /* Goodware rule */. Force yarGen to remvoe all goodware strings with --excludegood. Also since version 0.12.0 yarGen allows to place the "strings.xml" from PEstudio in the program directory in order to apply the blacklist definition during the string analysis process. You'll get better results.

The rule generation process tries to identify similarities between the files that get analyzed and then combines the strings to so called "super rules". Up to now the super rule generation does not remove the simple rule for the files that have been combined in a single super rule. This means that there is some redundancy when super rules are created. You can supress a simple rule for a file that was already covered by super rule by using --nosimple.

Installation

  1. Make sure you have at least 2.5GB of RAM on the machine you plan to use yarGen (4GB if opcodes should be included in rule generation, deactivate via --noop)
  2. Clone the git repository
  3. Install all dependancies with sudo pip install scandir lxml naiveBayesClassifier pefile
  4. Unzip the goodware string database (e.g. 7z x good-strings.db.zip.001)
  5. Unzip the goodware opcode database (e.g. 7z x good-opcodes.db.zip.001)
  6. See help with python yarGen.py --help

Memory Requirements

Warning: yarGen pulls the whole goodstring database to memory and uses up to 2.5 GB of memory for a few seconds - 4 GB if opcode evaluation is used.

I already tried to migrate the database to sqlite but the numerous string comparisons and lookups made the analysis very slow.

Command Line Parameters

usage: yarGen.py [-h] [-m M] [-l min-size] [-z min-score] [-s max-size]
                 [-rc maxstrings] [--excludegood] [-o output_rule_file]
                 [-a author] [-r ref] [-p prefix] [--score] [--nosimple]
                 [--nomagic] [--nofilesize] [-fm FM] [--noglobal] [--nosuper]
                 [-g G] [-u] [-c] [--nr] [--oe] [-fs size-in-MB] [--debug]
                 [--noop] [-n opcode-num] [--inverse] [--nodirname]
                 [--noscorefilter]

yarGen

optional arguments:
  -h, --help           show this help message and exit

Rule Creation:
  -m M                 Path to scan for malware
  -l min-size          Minimum string length to consider (default=8)
  -z min-score         Minimum score to consider (default=5)
  -s max-size          Maximum length to consider (default=128)
  -rc maxstrings       Maximum number of strings per rule (default=20,
                       intelligent filtering will be applied)
  --excludegood        Force the exclude all goodware strings

Rule Output:
  -o output_rule_file  Output rule file
  -a author            Author Name
  -r ref               Reference
  -p prefix            Prefix for the rule description
  --score              Show the string scores as comments in the rules
  --nosimple           Skip simple rule creation for files included in super
                       rules
  --nomagic            Don't include the magic header condition statement
  --nofilesize         Don't include the filesize condition statement
  -fm FM               Multiplier for the maximum 'filesize' condition
                       (default: 3)
  --noglobal           Don't create global rules
  --nosuper            Don't try to create super rules that match against
                       various files

Database Operations:
  -g G                 Path to scan for goodware (dont use the database
                       shipped with yaraGen)
  -u                   Update local goodware database (use with -g)
  -c                   Create new local goodware database (use with -g)

General Options:
  --nr                 Do not recursively scan directories
  --oe                 Only scan executable extensions EXE, DLL, ASP, JSP,
                       PHP, BIN, INFECTED
  -fs size-in-MB       Max file size in MB to analyze (default=10)
  --debug              Debug output

OpCode Feature:
  --noop               Do not use the OpCode string feature
  -n opcode-num        Number of opcodes to add if not enough high scoring
                       string could be found (default=3)

Inverse Mode:
  --inverse            Show the string scores as comments in the rules
  --nodirname          Don't use the folder name variable in inverse rules
  --noscorefilter      Don't filter strings based on score (default in
                       'inverse' mode)

Best Practice

See the following blog post for a more detailed description on how to use yarGen for YARA rule creation: How to Write Simple but Sound Yara Rules

Screenshots

Generator Run

Output Rule

As you can see in the screenshot above you'll get a rule that contains strings, which are not found in the goodware strings database.

You should clean up the rules afterwards. In the example above, remove the strings $s14, $s17, $s19, $s20 that look like random code to get a cleaner rule that is more likely to match on other samples of the same family.

To get a more generic rule, remove string $s5, which is very specific for this compiled executable.

Examples

Use the shipped database (FAST) to create some rules

python yarGen.py -m X:\MAL\Case1401

Use the shipped database of goodware strings and scan the malware directory "X:\MAL" recursively. Create rules for all files included in this directory and below. A file named 'yargen_rules.yar' will be generated in the current directory.

Use the shipped database (FAST) to create some rules

python yarGen.py --noop -m X:\MAL\Case1401

Deactivate the opcode analysis. (memory consumption 2.5GB instead of 4GB)

Show the score of the strings as comment

yarGen will by default use the top 20 strings based on their score. To see how a certain string in the rule scored, use the "--score" parameter.

python yarGen.py --score -m X:\MAL\Case1401

Use only strings with a certain minimum score

In order to use only strings for your rules that match a certain minimum score use the "-z" parameter. It is a good pratice to first create rules with "--score" and than perform a second run with a minimum score set for you sample set via "-z".

python yarGen.py --score -z 5 -m X:\MAL\Case1401

Preset author and reference

python yarGen.py -a "Florian Roth" -r "http://goo.gl/c2qgFx" -m /opt/mal/case_441 -o case441.yar

Exclude strings from Goodware samples

python yarGen.py --excludegood -m /opt/mal/case_441

Supress simple rule if alreay covered by a super rules

python yarGen.py --nosimple -m /opt/mal/case_441

Show debugging output

python yarGen.py --debug -m /opt/mal/case_441

Create a new goodware strings database

python yarGen.py -c -g C:\Windows\System32

Update the goodware strings database (append new strings to the old ones)

python yarGen.py -u -g "C:\Program Files"

Inverse rule creation (still beta)

In order to create some inverse rules on goodware, you have to prepare a directory with subdirectories in which you include all versions of the files you want to create inverse rules for with their original name and in their original folder. If that sounds strange, let me give you an example.

E.g. you want to create inverse rules for all Windows executables in the System32 folder, you have to create a goodware archive with the following directory structure:

  • G:\goodware
    • WindowsXP
      • System32 - all files
    • Windows2003
      • System32 - all files
    • Windows2008R2
      • System32 - all files

yarGen than creates rules that identify e.g. file name "cmd.exe" in path ending with "System32" and checks if the file contains certain necessary strings. If the strings don't show up, the rule will fire. This indicates a replaced system file or malware file that tries to masquerade as a system file.

python yarGen.py --inverse -oe -m G:\goodware\

You can also instruct yarGen not to include the file path but solely rely on the filename.

python yarGen.py --inverse -oe --nodirname -m G:\goodware\

About

A Yara Bulk Rule Generator

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%