-
-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Hernán Morales Durand
committed
Dec 27, 2023
1 parent
1cd367a
commit f6ffd19
Showing
3 changed files
with
84 additions
and
82 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
83 changes: 83 additions & 0 deletions
83
src/Math-Visualizations/PMPrincipalComponentAnalyserSVD.extension.st
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
Extension { #name : 'PMPrincipalComponentAnalyserSVD' } | ||
|
||
{ #category : '*Math-Visualizations' } | ||
PMPrincipalComponentAnalyserSVD class >> example1 [ | ||
"Extract 4 columns from original data" | ||
|
||
| d m pca m1 d1 irisDataFrame roassalChart scatterPlotShapes | | ||
|
||
irisDataFrame := AIDatasets loadIris. | ||
d := irisDataFrame columnsFrom: 1 to: 4. | ||
|
||
"Transform DF as matrix" | ||
m := PMMatrix rows: d asArrayOfRows. | ||
|
||
"Data standardization (mean = 0 and variance = 1)" | ||
m := PMStandardizationScaler new fitAndTransform: m. | ||
|
||
"Compute PCA components" | ||
pca := PMPrincipalComponentAnalyserSVD new. | ||
pca componentsNumber: 2. | ||
pca fit: m. | ||
pca transformMatrix. | ||
|
||
m1 := pca transform: m. | ||
|
||
d1 := DataFrame withRows: m1 rows. | ||
d1 | ||
addColumn: (irisDataFrame columnsFrom: 5 to: 5) asArrayOfColumns first | ||
named: 'type'. | ||
|
||
roassalChart := RSCompositeChart new | ||
title: 'PCA of Iris Data Frame'; | ||
addDecoration: (RSHorizontalTick new doNotUseNiceLabel asFloat: 3); | ||
addDecoration: RSVerticalTick new; | ||
yourself. | ||
|
||
scatterPlotShapes := (d1 column: 'type') asSet collect: [ : type | | ||
(d1 select: [ : e | e values includes: type ]) | ||
addScatterPlotShapeToChart: roassalChart ]. | ||
|
||
roassalChart padding: 10. | ||
scatterPlotShapes asOrderedCollection | ||
with: { Color red . Color green . Color blue } | ||
do: [ : scatterPlotShape : scatterPlotDotColor | | ||
scatterPlotShape color: scatterPlotDotColor ]. | ||
|
||
roassalChart open. | ||
|
||
|
||
] | ||
|
||
{ #category : '*Math-Visualizations' } | ||
PMPrincipalComponentAnalyserSVD class >> example2 [ | ||
"Extract 4 columns from original data. This example uses Random colors for each flower type" | ||
|
||
| d m pca m1 d1 irisDataFrame | | ||
|
||
irisDataFrame := AIDatasets loadIris. | ||
d := irisDataFrame columnsFrom: 1 to: 4. | ||
|
||
"Transform DF as matrix" | ||
m := PMMatrix rows: d asArrayOfRows. | ||
|
||
"Data standardization (mean = 0 and variance = 1)" | ||
m := PMStandardizationScaler new fitAndTransform: m. | ||
|
||
"Compute PCA components" | ||
pca := PMPrincipalComponentAnalyserSVD new. | ||
pca componentsNumber: 2. | ||
pca fit: m. | ||
pca transformMatrix. | ||
|
||
m1 := pca transform: m. | ||
|
||
d1 := DataFrame withRows: m1 rows. | ||
d1 | ||
addColumn: (irisDataFrame columnsFrom: 5 to: 5) asArrayOfColumns first | ||
named: 'type'. | ||
|
||
d1 | ||
openScatterPlotWithTitle: 'PCA of Iris data set' | ||
forColumn: 'type'. | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Package { #name : 'Math-Visualizations' } |