Skip to content

Commit

Permalink
disabled E501 (line too long) check and reformatted py files (#68)
Browse files Browse the repository at this point in the history
  • Loading branch information
pjflux2001 authored Nov 4, 2023
1 parent 006d22a commit 89094d2
Show file tree
Hide file tree
Showing 9 changed files with 116 additions and 223 deletions.
2 changes: 1 addition & 1 deletion setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ formats = bdist_wheel
[flake8]
# Some sane defaults for the code style checker flake8
max_line_length = 88
extend_ignore = E203, W503
extend_ignore = E203, W503, E501
# ^ Black-compatible
# E203 and W503 have edge cases handled by black
exclude =
Expand Down
3 changes: 1 addition & 2 deletions src/polyphy/core/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,8 +39,7 @@ def set_precision(float_precision):
PPTypes.FLOAT_CPU = np.float16
PPTypes.FLOAT_GPU = ti.f16
else:
raise ValueError("Invalid float precision value. Supported values: \
float64, float32, float16")
raise ValueError("Invalid float precision value. Supported values: float64, float32, float16")


class PPConfig:
Expand Down
56 changes: 22 additions & 34 deletions src/polyphy/core/discrete2D.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,20 +21,16 @@ def register_data(self, ppData):
self.ppData = ppData
self.TRACE_RESOLUTION_MAX = 1440
self.DATA_TO_AGENTS_RATIO = (
PPTypes.FLOAT_CPU(ppData.N_DATA) /
PPTypes.FLOAT_CPU(ppData.N_AGENTS)
PPTypes.FLOAT_CPU(ppData.N_DATA) / PPTypes.FLOAT_CPU(ppData.N_AGENTS)
)
self.DOMAIN_SIZE_MAX = np.max([ppData.DOMAIN_SIZE[0], ppData.DOMAIN_SIZE[1]])
self.TRACE_RESOLUTION = PPTypes.INT_CPU(
(PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[0] /
self.DOMAIN_SIZE_MAX, PPTypes.FLOAT_CPU(
self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[1] /
self.DOMAIN_SIZE_MAX)
)
self.TRACE_RESOLUTION = PPTypes.INT_CPU((
PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[0] / self.DOMAIN_SIZE_MAX,
PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[1] / self.DOMAIN_SIZE_MAX
))
self.DEPOSIT_RESOLUTION = (
self.TRACE_RESOLUTION[0] //
PPConfig.DEPOSIT_DOWNSCALING_FACTOR, self.TRACE_RESOLUTION[1] //
PPConfig.DEPOSIT_DOWNSCALING_FACTOR
self.TRACE_RESOLUTION[0] // PPConfig.DEPOSIT_DOWNSCALING_FACTOR,
self.TRACE_RESOLUTION[1] // PPConfig.DEPOSIT_DOWNSCALING_FACTOR
)

# Check if these are set and if not give them decent initial estimates
Expand Down Expand Up @@ -65,12 +61,10 @@ def __load_from_file__(self):
self.domain_min = (np.min(self.data[:, 0]), np.min(self.data[:, 1]))
self.domain_max = (np.max(self.data[:, 0]), np.max(self.data[:, 1]))
self.domain_size = np.subtract(self.domain_max, self.domain_min)
self.DOMAIN_MIN = (self.domain_min[0] - PPConfig.DOMAIN_MARGIN *
self.domain_size[0], self.domain_min[1] -
PPConfig.DOMAIN_MARGIN * self.domain_size[1])
self.DOMAIN_MAX = (self.domain_max[0] + PPConfig.DOMAIN_MARGIN *
self.domain_size[0], self.domain_max[1] +
PPConfig.DOMAIN_MARGIN * self.domain_size[1])
self.DOMAIN_MIN = (self.domain_min[0] - PPConfig.DOMAIN_MARGIN * self.domain_size[0],
self.domain_min[1] - PPConfig.DOMAIN_MARGIN * self.domain_size[1])
self.DOMAIN_MAX = (self.domain_max[0] + PPConfig.DOMAIN_MARGIN * self.domain_size[0],
self.domain_max[1] + PPConfig.DOMAIN_MARGIN * self.domain_size[1])
self.DOMAIN_SIZE = np.subtract(self.DOMAIN_MAX, self.DOMAIN_MIN)
self.AVG_WEIGHT = np.mean(self.data[:, 2])

Expand All @@ -83,12 +77,12 @@ def __generate_test_data__(self, rng):
self.DOMAIN_MIN = (0.0, 0.0)
self.DOMAIN_MAX = (PPConfig.DOMAIN_SIZE_DEFAULT, PPConfig.DOMAIN_SIZE_DEFAULT)
self.data = np.zeros(shape=(self.N_DATA, 3), dtype=PPTypes.FLOAT_CPU)
self.data[:, 0] = rng.normal(loc=self.DOMAIN_MIN[0] + 0.5 *
self.DOMAIN_MAX[0], scale=0.13 *
self.DOMAIN_SIZE[0], size=self.N_DATA)
self.data[:, 1] = rng.normal(loc=self.DOMAIN_MIN[1] + 0.5 *
self.DOMAIN_MAX[1], scale=0.13 *
self.DOMAIN_SIZE[1], size=self.N_DATA)
self.data[:, 0] = rng.normal(loc=self.DOMAIN_MIN[0] + 0.5 * self.DOMAIN_MAX[0],
scale=0.13 * self.DOMAIN_SIZE[0],
size=self.N_DATA)
self.data[:, 1] = rng.normal(loc=self.DOMAIN_MIN[1] + 0.5 * self.DOMAIN_MAX[1],
scale=0.13 * self.DOMAIN_SIZE[1],
size=self.N_DATA)
self.data[:, 2] = np.mean(self.data[:, 2])


Expand Down Expand Up @@ -139,7 +133,8 @@ def __init__(self, rng, ppKernels, ppConfig):
self.agents[:, 1] = rng.uniform(low=ppConfig.ppData.DOMAIN_MIN[1] + 0.001,
high=ppConfig.ppData.DOMAIN_MAX[1] - 0.001,
size=ppConfig.ppData.N_AGENTS)
self.agents[:, 2] = rng.uniform(low=0.0, high=2.0 * np.pi,
self.agents[:, 2] = rng.uniform(low=0.0,
high=2.0 * np.pi,
size=ppConfig.ppData.N_AGENTS)
self.agents[:, 3] = 1.0
Logger.logToStdOut("info", 'Agent sample:', self.agents[0, :])
Expand All @@ -155,16 +150,9 @@ def __init__(self, rng, ppKernels, ppConfig):
self.vis_field = ti.Vector.field(n=3, dtype=PPTypes.FLOAT_GPU,
shape=ppConfig.VIS_RESOLUTION)
Logger.logToStdOut("info", 'Total GPU memory allocated:',
PPTypes.INT_CPU(4 * (self.data_field.shape[0] * 3 +
self.agents_field.shape[0] * 4 +
self.deposit_field.shape[0] *
self.deposit_field.shape[1] * 2 +
self.trace_field.shape[0] *
self.trace_field.shape[1] * 1 +
self.vis_field.shape[0] *
self.vis_field.shape[1] * 3
) / 2 ** 20), 'MB')

PPTypes.INT_CPU(
4 * (self.data_field.shape[0] * 3 + self.agents_field.shape[0] * 4 + self.deposit_field.shape[0] * self.deposit_field.shape[1] * 2 + self.trace_field.shape[0] * self.trace_field.shape[1] * 1 + self.vis_field.shape[0] * self.vis_field.shape[1] * 3
) / 2 ** 20), 'MB')
self.ppConfig = ppConfig
self.ppKernels = ppKernels
self.__init_internal_data__(ppKernels)
Expand Down
30 changes: 12 additions & 18 deletions src/polyphy/core/discrete3D.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,12 +25,9 @@ def register_data(self, ppData):
self.DOMAIN_SIZE_MAX = np.max(
[ppData.DOMAIN_SIZE[0], ppData.DOMAIN_SIZE[1], ppData.DOMAIN_SIZE[2]])
self.TRACE_RESOLUTION = PPTypes.INT_CPU((
PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[0] /
self.DOMAIN_SIZE_MAX,
PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[1] /
self.DOMAIN_SIZE_MAX,
PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[2] /
self.DOMAIN_SIZE_MAX))
PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[0] / self.DOMAIN_SIZE_MAX,
PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[1] / self.DOMAIN_SIZE_MAX,
PPTypes.FLOAT_CPU(self.TRACE_RESOLUTION_MAX) * ppData.DOMAIN_SIZE[2] / self.DOMAIN_SIZE_MAX))
self.DEPOSIT_RESOLUTION = (
self.TRACE_RESOLUTION[0] // PPConfig.DEPOSIT_DOWNSCALING_FACTOR,
self.TRACE_RESOLUTION[1] // PPConfig.DEPOSIT_DOWNSCALING_FACTOR,
Expand Down Expand Up @@ -138,12 +135,10 @@ def store_fit(self):
Logger.logToStdOut("info", 'Storing solution data in data/fits/')
deposit = self.deposit_field.to_numpy()
np.save(
self.ppConfig.ppData.ROOT + 'data/fits/deposit_' + current_stamp +
'.npy', deposit)
self.ppConfig.ppData.ROOT + 'data/fits/deposit_' + current_stamp + '.npy', deposit)
trace = self.trace_field.to_numpy()
np.save(
self.ppConfig.ppData.ROOT + 'data/fits/trace_' + current_stamp +
'.npy', trace)
self.ppConfig.ppData.ROOT + 'data/fits/trace_' + current_stamp + '.npy', trace)
return current_stamp, deposit, trace

def __init__(self, rng, ppKernels, ppConfig):
Expand Down Expand Up @@ -196,13 +191,8 @@ def __init__(self, rng, ppKernels, ppConfig):
Logger.logToStdOut(
"info",
'Total GPU memory allocated:', PPTypes.INT_CPU(
4 * (
self.data_field.shape[0] * 4 +
self.agents_field.shape[0] * 6 +
self.deposit_field.shape[0] * self.deposit_field.shape[1] * 2 +
self.trace_field.shape[0] * self.trace_field.shape[1] * 1 +
self.vis_field.shape[0] * self.vis_field.shape[1] * 3
) / 2 ** 20), 'MB')
4 * (self.data_field.shape[0] * 4 + self.agents_field.shape[0] * 6 + self.deposit_field.shape[0] * self.deposit_field.shape[1] * 2 + self.trace_field.shape[0] * self.trace_field.shape[1] * 1 + self.vis_field.shape[0] * self.vis_field.shape[1] * 3
) / 2 ** 20), 'MB')
self.ppConfig = ppConfig
self.ppKernels = ppKernels
self.__init_internal_data__(ppKernels)
Expand All @@ -212,7 +202,11 @@ class PPSimulation_3DDiscrete(PPSimulation):
def __drawGUI__(self, window, ppConfig):
GuiHelper.draw(self, window, ppConfig)

def __init__(self, ppInternalData, ppConfig, batch_mode=False, num_iterations=-1):
def __init__(self,
ppInternalData,
ppConfig,
batch_mode=False,
num_iterations=-1):
self.current_deposit_index = 0
self.do_export = False
self.do_screenshot = False
Expand Down
3 changes: 1 addition & 2 deletions src/polyphy/kernel/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,7 @@ def ray_AABB_intersection(self, ray_pos, ray_dir, AABB_min, AABB_max):
t5 = (AABB_max[2] - ray_pos[2]) / ray_dir[2]
t6 = ti.max(ti.max(ti.min(t0, t1), ti.min(t2, t3)), ti.min(t4, t5))
t7 = ti.min(ti.min(ti.max(t0, t1), ti.max(t2, t3)), ti.max(t4, t5))
return PPTypes.VEC2f(-1.0, -1.0) if (
t7 < 0.0 or t6 >= t7) else PPTypes.VEC2f(t6, t7)
return PPTypes.VEC2f(-1.0, -1.0) if (t7 < 0.0 or t6 >= t7) else PPTypes.VEC2f(t6, t7)

# GPU kernels (callable by core classes via Taichi API) ========================
@ti.kernel
Expand Down
Loading

0 comments on commit 89094d2

Please sign in to comment.