Skip to content

Commit

Permalink
Add RecVAE model (#568)
Browse files Browse the repository at this point in the history
* Added RecVAE

* add recvae example

* update readme

* update README

* fix conflict

* remove local ndcg func

* removed unnecessary things from the source code.

* Add None Seed

* Remove unsued code. Fix bottleneck

* Added docstring for main class

* sort the imports alphabetically

* fix typo

* reorder import s

* CSR: Compressed Sparse Row, CSC: Compressed Sparse Colum

* reorder imports

* Update models.rst

* Update README.md

---------

Co-authored-by: SEUNGHEE.oh <[email protected]>
Co-authored-by: Quoc-Tuan Truong <[email protected]>
  • Loading branch information
3 people authored Dec 26, 2023
1 parent b39f415 commit 477405a
Show file tree
Hide file tree
Showing 9 changed files with 481 additions and 21 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,7 @@ The recommender models supported by Cornac are listed below. Why don't you join
| 2020 | [Adversarial Training Towards Robust Multimedia Recommender System (AMR)](cornac/models/amr), [paper](https://ieeexplore.ieee.org/document/8618394) | [requirements.txt](cornac/models/amr/requirements.txt) | [amr_clothing.py](examples/amr_clothing.py)
| | [Hybrid neural recommendation with joint deep representation learning of ratings and reviews (HRDR)](cornac/models/hrdr), [paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231219313207) | [requirements.txt](cornac/models/hrdr/requirements.txt) | [hrdr_example.py](examples/hrdr_example.py)
| | [LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation](cornac/models/lightgcn), [paper](https://arxiv.org/pdf/2002.02126.pdf) | [requirements.txt](cornac/models/lightgcn/requirements.txt) | [lightgcn_example.py](examples/lightgcn_example.py)
| | [New Variational Autoencoder for Top-N Recommendations with Implicit Feedback (RecVAE)](cornac/models/recvae), [paper](https://doi.org/10.1145/3336191.3371831) | [requirements.txt](cornac/models/recvae/requirements.txt) | [recvae_example.py](examples/recvae_example.py)
| | [Temporal-Item-Frequency-based User-KNN (TIFUKNN)](cornac/models/tifuknn), [paper](https://arxiv.org/pdf/2006.00556.pdf) | N/A | [tifuknn_tafeng.py](examples/tifuknn_tafeng.py)
| 2019 | [Embarrassingly Shallow Autoencoders for Sparse Data (EASEᴿ)](cornac/models/ease), [paper](https://arxiv.org/pdf/1905.03375.pdf) | N/A | [ease_movielens.py](examples/ease_movielens.py)
| | [Neural Graph Collaborative Filtering (NGCF)](cornac/models/ngcf), [paper](https://arxiv.org/pdf/1905.08108.pdf) | [requirements.txt](cornac/models/ngcf/requirements.txt) | [ngcf_example.py](examples/ngcf_example.py)
Expand Down
1 change: 1 addition & 0 deletions cornac/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@
from .online_ibpr import OnlineIBPR
from .pcrl import PCRL
from .pmf import PMF
from .recvae import RecVAE
from .sbpr import SBPR
from .skm import SKMeans
from .sorec import SoRec
Expand Down
1 change: 1 addition & 0 deletions cornac/models/recvae/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .recom_recvae import RecVAE
279 changes: 279 additions & 0 deletions cornac/models/recvae/recom_recvae.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,279 @@
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

import numpy as np
from tqdm.auto import trange

from ..recommender import Recommender
from ...exception import ScoreException


class RecVAE(Recommender):
"""
RecVAE, a recommender system based on a Variational Autoencoder.
Parameters
----------
name : str, optional, default: 'RecVae'
Name of the recommender model.
hidden_dim : int, optional, default: 600
Dimension of the hidden layer in the VAE architecture.
latent_dim : int, optional, default: 200
Dimension of the latent layer in the VAE architecture.
batch_size : int, optional, default: 500
Size of the batches used during training.
beta : float, optional
Weighting factor for the KL divergence term in the VAE loss function.
gamma : float, optional, default: 0.005
Weighting factor for the regularization term in the loss function.
lr : float, optional, default: 5e-4
Learning rate for the optimizer.
n_epochs : int, optional, default: 50
Number of epochs to train the model.
n_enc_epochs : int, optional, default: 3
Number of epochs to train the encoder part of VAE.
n_dec_epochs : int, optional, default: 1
Number of epochs to train the decoder part of VAE.
not_alternating : boolean, optional, default: False
If True, the model training will not alternate between encoder and decoder.
trainable : boolean, optional, default: True
When False, the model will not be re-trained, and input of pre-trained parameters are required.
verbose : boolean, optional, default: False
When True, running logs are displayed.
seed : int, optional
Random seed for weight initialization and training reproducibility.
use_gpu : boolean, optional, default: True
When True, training utilizes GPU if available.
References
----------
* RecVAE GitHub Repository: https://github.com/ilya-shenbin/RecVAE
* Paper Link: https://arxiv.org/abs/1912.11160
"""

def __init__(
self,
name="RecVae",

hidden_dim = 600,
latent_dim = 200,
batch_size = 500,
beta = None,
gamma = 0.005,
lr = 5e-4,
n_epochs = 50,
n_enc_epochs = 3,
n_dec_epochs = 1,
not_alternating = False,

trainable=True,
verbose=False,
seed=None,
use_gpu=True,
):



Recommender.__init__(self,name=name, trainable=trainable, verbose=verbose)

self.hidden_dim = hidden_dim
self.latent_dim = latent_dim
self.batch_size = batch_size
self.beta = beta
self.gamma = gamma
self.lr = lr
self.n_epochs = n_epochs
self.n_enc_epochs = n_enc_epochs
self.n_dec_epochs = n_dec_epochs
self.not_alternating = not_alternating
self.seed = seed


import torch
if use_gpu and torch.cuda.is_available():
self.device = torch.device("cuda:0")
else:
self.device = torch.device("cpu")


def run(self,model, opts, train_set, my_batch_size, n_epochs, beta, gamma, dropout_rate):
import torch
train_data = train_set.csr_matrix
model.train()
for _ in range(n_epochs):
for i, batch_ids in enumerate(
train_set.user_iter(my_batch_size, shuffle=True)
):

ratings = torch.Tensor((train_data[batch_ids,:]).toarray()).to(self.device)

for optimizer in opts:
optimizer.zero_grad()

_, loss = model(ratings, beta=beta, gamma=gamma, dropout_rate=dropout_rate)
loss.backward()

for optimizer in opts:
optimizer.step()


def fit(self, train_set, val_set=None):
"""Fit the model to observations.
Parameters
----------
train_set: :obj:`cornac.data.Dataset`, required
User-Item preference data as well as additional modalities.
val_set: :obj:`cornac.data.Dataset`, optional, default: None
User-Item preference data for model selection purposes (e.g., early stopping).
Returns
-------
self : object
"""
Recommender.fit(self, train_set, val_set)

from .recvae import VAE
import torch
from torch import optim

from ...metrics import NDCG
from ...eval_methods import ranking_eval

if self.trainable:

if self.verbose:
print("Learning...")
if self.seed is not None:
np.random.seed(self.seed)
torch.manual_seed(self.seed)
torch.cuda.manual_seed(self.seed)
torch.cuda.manual_seed_all(self.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False


model_kwargs = {
'hidden_dim': self.hidden_dim,
'latent_dim': self.latent_dim,
'input_dim': train_set.num_items,
}

self.recvae_model = VAE(**model_kwargs).to(self.device)



learning_kwargs = {
'model': self.recvae_model,
'train_set': train_set,
'my_batch_size': self.batch_size,
'beta': self.beta,
'gamma': self.gamma
}

self.mydata = train_set
decoder_params = set(self.recvae_model.decoder.parameters())
encoder_params = set(self.recvae_model.encoder.parameters())

optimizer_encoder = optim.Adam(encoder_params, lr=self.lr)
optimizer_decoder = optim.Adam(decoder_params, lr=self.lr)

progress_bar = trange(1, self.n_epochs + 1, desc="RecVAE", disable=not self.verbose)

for _ in progress_bar:
if self.not_alternating:
self.run(opts=[optimizer_encoder, optimizer_decoder], n_epochs=1, dropout_rate=0.5, **learning_kwargs)
else:
self.run(opts=[optimizer_encoder], n_epochs=self.n_enc_epochs, dropout_rate=0.5, **learning_kwargs)
self.recvae_model.update_prior()
self.run(opts=[optimizer_decoder], n_epochs=self.n_dec_epochs, dropout_rate=0, **learning_kwargs)


ndcg_100 = ranking_eval(
model=self,
metrics=[NDCG(k=100)],
train_set=train_set,
test_set=train_set,
)[0][0]


progress_bar.set_postfix(ndcg100 = ndcg_100)

if self.verbose:
print(f"Learning completed : [{ndcg_100}]")

elif self.verbose:
print("%s is trained already (trainable = False)" % (self.name))


return self

def score(self, user_idx, item_idx=None):
"""Predict the scores/ratings of a user for an item.
Parameters
----------
user_id: int, required
The index of the user for whom to perform score prediction.
item_id: int, optional, default: None
The index of the item for that to perform score prediction.
If None, scores for all known items will be returned.
Returns
-------
res : A scalar or a Numpy array
Relative scores that the user gives to the item or to all known items
"""
import torch

ratings_in = self.mydata.matrix[user_idx,:]
ratings_pred = self.recvae_model(torch.Tensor(ratings_in.toarray()).to(self.device), calculate_loss=False).cpu().detach().numpy().flatten()


if item_idx is None:
if not self.knows_user(user_idx):
raise ScoreException(
"Can't make score prediction for (user_id=%d)" % user_idx
)

return ratings_pred
else:
if not (self.knows_user(user_idx) and self.knows_item(item_idx)):
raise ScoreException(
"Can't make score prediction for (user_id=%d, item_id=%d)"
% (user_idx, item_idx)
)

return ratings_pred[item_idx]

Loading

0 comments on commit 477405a

Please sign in to comment.