Skip to content

Commit

Permalink
Fix GCMC Invalid Key Error (#533)
Browse files Browse the repository at this point in the history
* Add missing default scores when item_idx is none

* Added all items into test_dec_graph for all users

* changed to create dec_graph for each user when scoring
  • Loading branch information
darrylong authored Oct 19, 2023
1 parent 0955645 commit a25054d
Show file tree
Hide file tree
Showing 2 changed files with 77 additions and 7 deletions.
77 changes: 76 additions & 1 deletion cornac/models/gcmc/gcmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,41 @@ def _generate_dec_graph(data_set):
)


def _generate_test_user_graph(user_idx, total_users, total_items):
"""
Generates decoding graph given a cornac data set
Parameters
----------
data_set : cornac.data.dataset.Dataset
The data set as provided by cornac
Returns
-------
graph : dgl.heterograph
Heterograph containing user-item edges and nodes
"""
u_list = np.array([user_idx for _ in range(total_items)])
i_list = np.array([item_idx for item_idx in range(total_items)])

rating_pairs = (u_list, i_list)
ones = np.ones_like(rating_pairs[0])
user_item_ratings_coo = sp.coo_matrix(
(ones, rating_pairs),
shape=(total_users, total_items),
dtype=np.float32,
)

graph = dgl.bipartite_from_scipy(
user_item_ratings_coo, utype="_U", etype="_E", vtype="_V"
)

return dgl.heterograph(
{("user", "rate", "item"): graph.edges()},
num_nodes_dict={"user": total_users, "item": total_items},
)


class Model:
def __init__(
self,
Expand Down Expand Up @@ -479,7 +514,11 @@ def predict(self, test_set):

test_pred_ratings = test_pred_ratings.cpu().numpy()

(u_list, i_list, _) = test_set.uir_tuple
uid_list = test_set.uir_tuple[0]
uid_list = np.unique(uid_list)

u_list = np.array([user_idx for _ in range(test_set.total_items) for user_idx in uid_list])
i_list = np.array([item_idx for item_idx in range(test_set.total_items) for _ in uid_list])

u_list = u_list.tolist()
i_list = i_list.tolist()
Expand All @@ -489,3 +528,39 @@ def predict(self, test_set):
for idx, rating in enumerate(test_pred_ratings)
}
return u_i_rating_dict

def predict_one(self, train_set, user_idx):
"""
Processes single user_idx from test set and returns numpy list of scores
for all items.
Parameters
----------
train_set : cornac.data.dataset.Dataset
The train set as provided by cornac
Returns
-------
test_pred_ratings : numpy.array
Numpy array containing all ratings for the given user_idx.
"""
test_dec_graph = _generate_test_user_graph(user_idx, train_set.total_users, train_set.total_items)
test_dec_graph = test_dec_graph.int().to(self.device)

self.net.eval()

with torch.no_grad():
pred_ratings = self.net(self.train_enc_graph, test_dec_graph)

test_rating_values = train_set.uir_tuple[2]
test_rating_values = np.unique(test_rating_values)

nd_positive_rating_values = torch.FloatTensor(test_rating_values).to(
self.device
)

test_pred_ratings = (
torch.softmax(pred_ratings, dim=1) * nd_positive_rating_values.view(1, -1)
).sum(dim=1)

return test_pred_ratings.cpu().numpy()
7 changes: 1 addition & 6 deletions cornac/models/gcmc/recom_gcmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,11 +213,6 @@ def score(self, user_idx, item_idx=None):
"""
if item_idx is None:
# Return scores of all items for a given user
# - If item does not exist in test_set, we provide a default score
# (as set in default_dict initialisation)
return [
self.u_i_rating_dict[f"{user_idx}-{idx}"]
for idx in range(self.train_set.total_items)
]
return self.model.predict_one(self.train_set, user_idx)
# Return score of known user/item
return self.u_i_rating_dict.get(f"{user_idx}-{item_idx}", self.default_score())

0 comments on commit a25054d

Please sign in to comment.