-
Notifications
You must be signed in to change notification settings - Fork 149
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Temporal-Item-Frequency-based User-KNN (TIFUKNN) model (#566)
* Add Temporal-Item-Frequency-based User-KNN (TIFUKNN) model for next basket recommendation * replace KNN with KDTree * refactor code * Fix scoring function using the average neighbors vectors
- Loading branch information
Showing
6 changed files
with
236 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# Copyright 2023 The Cornac Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
|
||
from .recom_tifuknn import TIFUKNN |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
# Copyright 2023 The Cornac Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
|
||
import warnings | ||
from time import time | ||
|
||
import numpy as np | ||
from tqdm import tqdm | ||
|
||
from ..recommender import NextBasketRecommender | ||
|
||
|
||
class TIFUKNN(NextBasketRecommender): | ||
"""Temporal-Item-Frequency-based User-KNN (TIFUKNN) | ||
Parameters | ||
---------- | ||
name: string, default: 'TIFUKNN' | ||
The name of the recommender model. | ||
n_neighbors: int, optional, default: 300 | ||
The number of neighbors for KNN | ||
within_decay_rate: float, optional, default: 0.9 | ||
Within-basket time-decayed ratio in range [0, 1] | ||
group_decay_rate: float, optional, default: 0.7 | ||
Group time-decayed ratio in range [0, 1] | ||
alpha: float, optional, default: 0.7 | ||
The trade-off between current user vector and neighbors vectors | ||
to compute final item scores | ||
n_groups: int, optional, default: 7 | ||
The historal baskets will be partition into `n_groups` equally. | ||
verbose: boolean, optional, default: False | ||
When True, running logs are displayed. | ||
References | ||
---------- | ||
Haoji Hu, Xiangnan He, Jinyang Gao, and Zhi-Li Zhang. 2020. | ||
Modeling Personalized Item Frequency Information for Next-basket Recommendation. | ||
In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20). Association for Computing Machinery, New York, NY, USA, 1071–1080. https://doi.org/10.1145/3397271.3401066 | ||
""" | ||
|
||
def __init__( | ||
self, | ||
name="TIFUKNN", | ||
n_neighbors=300, | ||
within_decay_rate=0.9, | ||
group_decay_rate=0.7, | ||
alpha=0.7, | ||
n_groups=7, | ||
verbose=False, | ||
): | ||
super().__init__(name=name, trainable=False, verbose=verbose) | ||
assert within_decay_rate >= 0 and within_decay_rate <= 1 | ||
assert group_decay_rate >= 0 and group_decay_rate <= 1 | ||
self.n_neighbors = n_neighbors | ||
self.within_decay_rate = within_decay_rate | ||
self.group_decay_rate = group_decay_rate | ||
self.alpha = alpha | ||
self.n_groups = n_groups | ||
|
||
def fit(self, train_set, val_set=None): | ||
from scipy.spatial import KDTree | ||
|
||
super().fit(train_set=train_set, val_set=val_set) | ||
self.user_vectors = self._get_user_vectors(self.train_set) | ||
if self.n_neighbors > len(self.user_vectors): | ||
warnings.warn("Number of users is %d, smaller than number of neighbors %d" % (len(self.user_vectors), self.n_neighbors)) | ||
self.n_neighbors = len(self.user_vectors) | ||
|
||
start_time = time() | ||
if self.verbose: | ||
print("Constructing kd-tree for quick nearest-neighbor lookup") | ||
self.tree = KDTree(self.user_vectors) | ||
if self.verbose: | ||
print("Constructing kd-tree for quick nearest-neighbor lookup takes %.0f" % (time() - start_time)) | ||
return self | ||
|
||
def _get_user_vectors(self, data_set): | ||
user_vectors = [] | ||
for _, _, [basket_items] in tqdm( | ||
data_set.ubi_iter(batch_size=1, shuffle=False), | ||
desc="Getting user vectors", | ||
total=data_set.num_users, | ||
): | ||
user_vectors.append(self._compute_user_vector(basket_items[:-1])) | ||
user_vectors = np.asarray(user_vectors, dtype="float32") | ||
return user_vectors | ||
|
||
def _compute_user_vector(self, history_baskets): | ||
his_list = [] | ||
n_baskets = len(history_baskets) | ||
for inc, iids in enumerate(history_baskets): | ||
his_vec = np.zeros(self.total_items, dtype="float32") | ||
decayed_val = np.power(self.within_decay_rate, n_baskets - inc - 1) | ||
for iid in iids: | ||
his_vec[iid] = decayed_val | ||
his_list.append(his_vec) | ||
grouped_list, real_n_groups = self._group_history_list(his_list, self.n_groups) | ||
his_vec = np.zeros(self.total_items, dtype="float32") | ||
if real_n_groups == 0: | ||
return his_vec | ||
|
||
for idx in range(real_n_groups): | ||
decayed_val = np.power(self.group_decay_rate, self.n_groups - idx - 1) | ||
his_vec += grouped_list[idx] * decayed_val | ||
|
||
return his_vec / real_n_groups | ||
|
||
def _group_history_list(self, his_list, n_groups): | ||
grouped_vec_list = [] | ||
if len(his_list) < n_groups: | ||
for j in range(len(his_list)): | ||
grouped_vec_list.append(his_list[j]) | ||
return grouped_vec_list, len(his_list) | ||
else: | ||
est_num_vec_each_block = len(his_list) / n_groups | ||
base_num_vec_each_block = int(np.floor(len(his_list) / n_groups)) | ||
residual = est_num_vec_each_block - base_num_vec_each_block | ||
|
||
num_vec_has_extra_vec = int(np.round(residual * n_groups)) | ||
|
||
if residual == 0: | ||
for i in range(n_groups): | ||
sum = np.zeros(len(his_list[0])) | ||
for j in range(base_num_vec_each_block): | ||
sum += his_list[i * base_num_vec_each_block + j] | ||
grouped_vec_list.append(sum / base_num_vec_each_block) | ||
else: | ||
for i in range(n_groups - num_vec_has_extra_vec): | ||
sum = np.zeros(len(his_list[0])) | ||
for j in range(base_num_vec_each_block): | ||
sum += his_list[i * base_num_vec_each_block + j] | ||
last_idx = i * base_num_vec_each_block + j | ||
grouped_vec_list.append(sum / base_num_vec_each_block) | ||
|
||
est_num = int(np.ceil(est_num_vec_each_block)) | ||
start_group_idx = n_groups - num_vec_has_extra_vec | ||
if len(his_list) - start_group_idx * base_num_vec_each_block >= est_num_vec_each_block: | ||
for i in range(start_group_idx, n_groups): | ||
sum = np.zeros(len(his_list[0])) | ||
for j in range(est_num): | ||
iidxx = last_idx + 1 + (i - start_group_idx) * est_num + j | ||
sum += his_list[iidxx] | ||
grouped_vec_list.append(sum / est_num) | ||
|
||
return grouped_vec_list, n_groups | ||
|
||
def score(self, user_idx, history_baskets, **kwargs): | ||
if len(history_baskets) == 0: | ||
return np.zeros(self.total_items, dtype="float32") | ||
user_vector = self._compute_user_vector(history_baskets) | ||
_, indices = self.tree.query([user_vector], k=self.n_neighbors) | ||
return self.alpha * user_vector + (1 - self.alpha) * np.mean(self.user_vectors[indices.squeeze()]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# Copyright 2023 The Cornac Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
"""Example of Temporal-Item-Frequency-based User-KNN (TIFUKNN)""" | ||
|
||
import cornac | ||
from cornac.eval_methods import NextBasketEvaluation | ||
from cornac.metrics import NDCG, HitRatio, Recall | ||
from cornac.models import TIFUKNN | ||
|
||
data = cornac.datasets.tafeng.load_basket(reader=cornac.data.Reader(min_basket_size=3, max_basket_size=50, min_basket_sequence=2)) | ||
|
||
next_basket_eval = NextBasketEvaluation(data=data, fmt="UBITJson", test_size=0.2, val_size=0.08, seed=123, verbose=True) | ||
|
||
models = [ | ||
TIFUKNN( | ||
n_neighbors=300, | ||
within_decay_rate=0.9, | ||
group_decay_rate=0.7, | ||
alpha=0.7, | ||
n_groups=7, | ||
) | ||
] | ||
|
||
metrics = [ | ||
Recall(k=10), | ||
Recall(k=50), | ||
NDCG(k=10), | ||
NDCG(k=50), | ||
HitRatio(k=10), | ||
HitRatio(k=50), | ||
] | ||
|
||
cornac.Experiment(eval_method=next_basket_eval, models=models, metrics=metrics).run() |