Skip to content

Commit

Permalink
add deps for doc build
Browse files Browse the repository at this point in the history
  • Loading branch information
apoorvalal committed Aug 2, 2024
1 parent 7b7d5a6 commit 0fe24a6
Show file tree
Hide file tree
Showing 3 changed files with 2,752 additions and 502 deletions.
178 changes: 64 additions & 114 deletions docs/examples/example_estimating_ates.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -22,92 +22,11 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"f2Mw6R\"></div>\n",
" <script type=\"text/javascript\" data-lets-plot-script=\"library\">\n",
" if(!window.letsPlotCallQueue) {\n",
" window.letsPlotCallQueue = [];\n",
" }; \n",
" window.letsPlotCall = function(f) {\n",
" window.letsPlotCallQueue.push(f);\n",
" };\n",
" (function() {\n",
" var script = document.createElement(\"script\");\n",
" script.type = \"text/javascript\";\n",
" script.src = \"https://cdn.jsdelivr.net/gh/JetBrains/[email protected]/js-package/distr/lets-plot.min.js\";\n",
" script.onload = function() {\n",
" window.letsPlotCall = function(f) {f();};\n",
" window.letsPlotCallQueue.forEach(function(f) {f();});\n",
" window.letsPlotCallQueue = [];\n",
" \n",
" };\n",
" script.onerror = function(event) {\n",
" window.letsPlotCall = function(f) {}; // noop\n",
" window.letsPlotCallQueue = [];\n",
" var div = document.createElement(\"div\");\n",
" div.style.color = 'darkred';\n",
" div.textContent = 'Error loading Lets-Plot JS';\n",
" document.getElementById(\"f2Mw6R\").appendChild(div);\n",
" };\n",
" var e = document.getElementById(\"f2Mw6R\");\n",
" e.appendChild(script);\n",
" })()\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" <div id=\"iEmQSv\"></div>\n",
" <script type=\"text/javascript\" data-lets-plot-script=\"library\">\n",
" if(!window.letsPlotCallQueue) {\n",
" window.letsPlotCallQueue = [];\n",
" }; \n",
" window.letsPlotCall = function(f) {\n",
" window.letsPlotCallQueue.push(f);\n",
" };\n",
" (function() {\n",
" var script = document.createElement(\"script\");\n",
" script.type = \"text/javascript\";\n",
" script.src = \"https://cdn.jsdelivr.net/gh/JetBrains/[email protected]/js-package/distr/lets-plot.min.js\";\n",
" script.onload = function() {\n",
" window.letsPlotCall = function(f) {f();};\n",
" window.letsPlotCallQueue.forEach(function(f) {f();});\n",
" window.letsPlotCallQueue = [];\n",
" \n",
" };\n",
" script.onerror = function(event) {\n",
" window.letsPlotCall = function(f) {}; // noop\n",
" window.letsPlotCallQueue = [];\n",
" var div = document.createElement(\"div\");\n",
" div.style.color = 'darkred';\n",
" div.textContent = 'Error loading Lets-Plot JS';\n",
" document.getElementById(\"iEmQSv\").appendChild(div);\n",
" };\n",
" var e = document.getElementById(\"iEmQSv\");\n",
" e.appendChild(script);\n",
" })()\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import pyfixest as pf"
"import statsmodels.formula.api as smf"
]
},
{
Expand Down Expand Up @@ -180,7 +99,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Linear Regression (`pyfixest`)"
"## Linear Regression "
]
},
{
Expand All @@ -189,21 +108,20 @@
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1.62494388 0.0468862 ]\n"
]
"data": {
"text/plain": [
"(1.624943884109307, 0.04532725031682251)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(\n",
" naive_est := pf.feols(f\"{outcome_column} ~ {treatment_column}\", df)\n",
" .tidy()\n",
" .query(\"Coefficient == 'W'\")\n",
" .iloc[0, :2]\n",
" .values\n",
")"
"naive_lm = smf.ols(f\"{outcome_column} ~ {treatment_column}\", df) .fit(cov_type=\"HC1\")\n",
"naive_est = naive_lm.params.iloc[1], naive_lm.bse.iloc[1]\n",
"naive_est"
]
},
{
Expand All @@ -212,22 +130,21 @@
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1.132635 0.02973861]\n"
]
"data": {
"text/plain": [
"(1.1326349969274776, 0.02972906033475406)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(\n",
" linreg_est := pf.feols(\n",
" f\"{outcome_column} ~ {treatment_column}+{'+'.join(feature_columns)}\", df\n",
" )\n",
" .tidy()\n",
" .query(\"Coefficient == 'W'\")\n",
" .iloc[0, :2].values\n",
")"
"covaradjust_lm = smf.ols(f\"{outcome_column} ~ {treatment_column}+{'+'.join(feature_columns)}\",\n",
" df) .fit(cov_type=\"HC1\")\n",
"linreg_est = covaradjust_lm.params.iloc[1], covaradjust_lm.bse.iloc[1]\n",
"linreg_est"
]
},
{
Expand All @@ -250,7 +167,40 @@
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/html": [
"<style type='text/css'>\n",
".datatable table.frame { margin-bottom: 0; }\n",
".datatable table.frame thead { border-bottom: none; }\n",
".datatable table.frame tr.coltypes td { color: #FFFFFF; line-height: 6px; padding: 0 0.5em;}\n",
".datatable .bool { background: #DDDD99; }\n",
".datatable .object { background: #565656; }\n",
".datatable .int { background: #5D9E5D; }\n",
".datatable .float { background: #4040CC; }\n",
".datatable .str { background: #CC4040; }\n",
".datatable .time { background: #40CC40; }\n",
".datatable .row_index { background: var(--jp-border-color3); border-right: 1px solid var(--jp-border-color0); color: var(--jp-ui-font-color3); font-size: 9px;}\n",
".datatable .frame tbody td { text-align: left; }\n",
".datatable .frame tr.coltypes .row_index { background: var(--jp-border-color0);}\n",
".datatable th:nth-child(2) { padding-left: 12px; }\n",
".datatable .hellipsis { color: var(--jp-cell-editor-border-color);}\n",
".datatable .vellipsis { background: var(--jp-layout-color0); color: var(--jp-cell-editor-border-color);}\n",
".datatable .na { color: var(--jp-cell-editor-border-color); font-size: 80%;}\n",
".datatable .sp { opacity: 0.25;}\n",
".datatable .footer { font-size: 9px; }\n",
".datatable .frame_dimensions { background: var(--jp-border-color3); border-top: 1px solid var(--jp-border-color0); color: var(--jp-ui-font-color3); display: inline-block; opacity: 0.6; padding: 1px 10px 1px 5px;}\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from metalearners import DRLearner\n",
"from lightgbm import LGBMRegressor, LGBMClassifier\n",
Expand Down Expand Up @@ -499,8 +449,8 @@
" </tr>\n",
" <tr>\n",
" <th>0.036994</th>\n",
" <td>0.046886</td>\n",
" <td>0.029739</td>\n",
" <td>0.045327</td>\n",
" <td>0.029729</td>\n",
" <td>0.036992</td>\n",
" <td>0.038809</td>\n",
" <td>0.059</td>\n",
Expand All @@ -512,7 +462,7 @@
"text/plain": [
" naive linreg metalearners doubleml econml\n",
"est 1.624944 1.132635 1.014673 1.013663 1.069\n",
"0.036994 0.046886 0.029739 0.036992 0.038809 0.059"
"0.036994 0.045327 0.029729 0.036992 0.038809 0.059"
]
},
"execution_count": 14,
Expand Down Expand Up @@ -550,7 +500,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
Loading

0 comments on commit 0fe24a6

Please sign in to comment.