Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

X, R, DR learners joblib #2

Merged
merged 1 commit into from
Jun 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 48 additions & 23 deletions metalearners/drlearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
# # SPDX-License-Identifier: BSD-3-Clause

import numpy as np
from joblib import Parallel, delayed
from typing_extensions import Self

from metalearners._typing import Matrix, OosMethod, Vector
Expand All @@ -22,7 +23,9 @@
VARIANT_OUTCOME_MODEL,
MetaLearner,
_ConditionalAverageOutcomeMetaLearner,
_fit_cross_fit_estimator_joblib,
_ModelSpecifications,
_ParallelJoblibSpecification,
)

_EPSILON = 1e-09
Expand Down Expand Up @@ -102,27 +105,43 @@ def fit(
else:
cv_split_indices = None

# TODO: Consider multiprocessing
nuisance_jobs: list[_ParallelJoblibSpecification | None] = []
for treatment_variant in range(self.n_variants):
self.fit_nuisance(
X=index_matrix(X, self._treatment_variants_indices[treatment_variant]),
y=y[self._treatment_variants_indices[treatment_variant]],
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=treatment_variant,
nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=index_matrix(
X, self._treatment_variants_indices[treatment_variant]
),
y=y[self._treatment_variants_indices[treatment_variant]],
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=treatment_variant,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][VARIANT_OUTCOME_MODEL],
)
)

nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=X,
y=w,
model_kind=PROPENSITY_MODEL,
model_ord=0,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][VARIANT_OUTCOME_MODEL],
fit_params=qualified_fit_params[NUISANCE][PROPENSITY_MODEL],
cv=cv_split_indices,
)
)

self.fit_nuisance(
X=X,
y=w,
model_kind=PROPENSITY_MODEL,
model_ord=0,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][PROPENSITY_MODEL],
cv=cv_split_indices,
parallel = Parallel(n_jobs=n_jobs_base_learners)
results = parallel(
delayed(_fit_cross_fit_estimator_joblib)(job)
for job in nuisance_jobs
if job is not None
)

self._assign_joblib_nuisance_results(results)

treatment_jobs: list[_ParallelJoblibSpecification] = []
for treatment_variant in range(1, self.n_variants):
pseudo_outcomes = self._pseudo_outcome(
X=X,
Expand All @@ -131,15 +150,21 @@ def fit(
treatment_variant=treatment_variant,
)

self.fit_treatment(
X=X,
y=pseudo_outcomes,
model_kind=TREATMENT_MODEL,
model_ord=treatment_variant - 1,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[TREATMENT][TREATMENT_MODEL],
cv=cv_split_indices,
treatment_jobs.append(
self._treatment_joblib_specifications(
X=X,
y=pseudo_outcomes,
model_kind=TREATMENT_MODEL,
model_ord=treatment_variant - 1,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[TREATMENT][TREATMENT_MODEL],
cv=cv_split_indices,
)
)
results = parallel(
delayed(_fit_cross_fit_estimator_joblib)(job) for job in treatment_jobs
)
self._assign_joblib_treatment_results(results)
return self

def predict(
Expand Down
72 changes: 48 additions & 24 deletions metalearners/rlearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
# # SPDX-License-Identifier: BSD-3-Clause

import numpy as np
from joblib import Parallel, delayed
from sklearn.metrics import log_loss, root_mean_squared_error
from typing_extensions import Self

Expand All @@ -23,7 +24,9 @@
TREATMENT,
TREATMENT_MODEL,
MetaLearner,
_fit_cross_fit_estimator_joblib,
_ModelSpecifications,
_ParallelJoblibSpecification,
)

OUTCOME_MODEL = "outcome_model"
Expand Down Expand Up @@ -175,25 +178,40 @@ def fit(
else:
cv_split_indices = None

self.fit_nuisance(
X=X,
y=w,
model_kind=PROPENSITY_MODEL,
model_ord=0,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][PROPENSITY_MODEL],
cv=cv_split_indices,
nuisance_jobs: list[_ParallelJoblibSpecification | None] = []

nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=X,
y=w,
model_kind=PROPENSITY_MODEL,
model_ord=0,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][PROPENSITY_MODEL],
cv=cv_split_indices,
)
)
self.fit_nuisance(
X=X,
y=y,
model_kind=OUTCOME_MODEL,
model_ord=0,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][OUTCOME_MODEL],
cv=cv_split_indices,
nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=X,
y=y,
model_kind=OUTCOME_MODEL,
model_ord=0,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][OUTCOME_MODEL],
cv=cv_split_indices,
)
)

parallel = Parallel(n_jobs=n_jobs_base_learners)
results = parallel(
delayed(_fit_cross_fit_estimator_joblib)(job)
for job in nuisance_jobs
if job is not None
)
self._assign_joblib_nuisance_results(results)

treatment_jobs: list[_ParallelJoblibSpecification] = []
for treatment_variant in range(1, self.n_variants):

is_treatment = w == treatment_variant
Expand All @@ -213,15 +231,21 @@ def fit(

X_filtered = index_matrix(X, mask)

self.fit_treatment(
X=X_filtered,
y=pseudo_outcomes,
model_kind=TREATMENT_MODEL,
model_ord=treatment_variant - 1,
fit_params=qualified_fit_params[TREATMENT][TREATMENT_MODEL]
| {_SAMPLE_WEIGHT: weights},
n_jobs_cross_fitting=n_jobs_cross_fitting,
treatment_jobs.append(
self._treatment_joblib_specifications(
X=X_filtered,
y=pseudo_outcomes,
model_kind=TREATMENT_MODEL,
model_ord=treatment_variant - 1,
fit_params=qualified_fit_params[TREATMENT][TREATMENT_MODEL]
| {_SAMPLE_WEIGHT: weights},
n_jobs_cross_fitting=n_jobs_cross_fitting,
)
)
results = parallel(
delayed(_fit_cross_fit_estimator_joblib)(job) for job in treatment_jobs
)
self._assign_joblib_treatment_results(results)
return self

def predict(
Expand Down
92 changes: 60 additions & 32 deletions metalearners/xlearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
# # SPDX-License-Identifier: BSD-3-Clause

import numpy as np
from joblib import Parallel, delayed
from typing_extensions import Self

from metalearners._typing import Matrix, OosMethod, Vector
Expand All @@ -20,7 +21,9 @@
VARIANT_OUTCOME_MODEL,
MetaLearner,
_ConditionalAverageOutcomeMetaLearner,
_fit_cross_fit_estimator_joblib,
_ModelSpecifications,
_ParallelJoblibSpecification,
)

CONTROL_EFFECT_MODEL = "control_effect_model"
Expand Down Expand Up @@ -98,51 +101,76 @@ def fit(
cv_split_indices = None
cvs.append(cv_split_indices)

# TODO: Consider multiprocessing
nuisance_jobs: list[_ParallelJoblibSpecification | None] = []
for treatment_variant in range(self.n_variants):
self.fit_nuisance(
X=index_matrix(X, self._treatment_variants_indices[treatment_variant]),
y=y[self._treatment_variants_indices[treatment_variant]],
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=treatment_variant,
nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=index_matrix(
X, self._treatment_variants_indices[treatment_variant]
),
y=y[self._treatment_variants_indices[treatment_variant]],
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=treatment_variant,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][VARIANT_OUTCOME_MODEL],
cv=cvs[treatment_variant],
)
)

nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=X,
y=w,
model_kind=PROPENSITY_MODEL,
model_ord=0,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][VARIANT_OUTCOME_MODEL],
cv=cvs[treatment_variant],
fit_params=qualified_fit_params[NUISANCE][PROPENSITY_MODEL],
)
)

self.fit_nuisance(
X=X,
y=w,
model_kind=PROPENSITY_MODEL,
model_ord=0,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[NUISANCE][PROPENSITY_MODEL],
parallel = Parallel(n_jobs=n_jobs_base_learners)
results = parallel(
delayed(_fit_cross_fit_estimator_joblib)(job)
for job in nuisance_jobs
if job is not None
)
self._assign_joblib_nuisance_results(results)

treatment_jobs: list[_ParallelJoblibSpecification] = []
for treatment_variant in range(1, self.n_variants):
imputed_te_control, imputed_te_treatment = self._pseudo_outcome(
X, y, w, treatment_variant
)

self.fit_treatment(
X=index_matrix(X, self._treatment_variants_indices[treatment_variant]),
y=imputed_te_treatment,
model_kind=TREATMENT_EFFECT_MODEL,
model_ord=treatment_variant - 1,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[TREATMENT][TREATMENT_EFFECT_MODEL],
cv=cvs[treatment_variant],
treatment_jobs.append(
self._treatment_joblib_specifications(
X=index_matrix(
X, self._treatment_variants_indices[treatment_variant]
),
y=imputed_te_treatment,
model_kind=TREATMENT_EFFECT_MODEL,
model_ord=treatment_variant - 1,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[TREATMENT][TREATMENT_EFFECT_MODEL],
cv=cvs[treatment_variant],
)
)
self.fit_treatment(
X=index_matrix(X, self._treatment_variants_indices[0]),
y=imputed_te_control,
model_kind=CONTROL_EFFECT_MODEL,
model_ord=treatment_variant - 1,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[TREATMENT][CONTROL_EFFECT_MODEL],
cv=cvs[0],

treatment_jobs.append(
self._treatment_joblib_specifications(
X=index_matrix(X, self._treatment_variants_indices[0]),
y=imputed_te_control,
model_kind=CONTROL_EFFECT_MODEL,
model_ord=treatment_variant - 1,
n_jobs_cross_fitting=n_jobs_cross_fitting,
fit_params=qualified_fit_params[TREATMENT][CONTROL_EFFECT_MODEL],
cv=cvs[0],
)
)

results = parallel(
delayed(_fit_cross_fit_estimator_joblib)(job) for job in treatment_jobs
)
self._assign_joblib_treatment_results(results)
return self

def predict(
Expand Down
8 changes: 6 additions & 2 deletions tests/test_learner.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,7 @@ def test_learner_synthetic(
observed_outcomes_train,
treatment_train,
synchronize_cross_fitting=True,
n_jobs_base_learners=-1,
)

# In sample CATEs
Expand Down Expand Up @@ -236,6 +237,7 @@ def test_learner_synthetic_oos_ate(metalearner, treatment_kind, request):
observed_outcomes_train,
treatment_train,
synchronize_cross_fitting=True,
n_jobs_base_learners=-1,
)
for oos_method in _OOS_WHITELIST:
cate_estimates = learner.predict(
Expand Down Expand Up @@ -427,12 +429,14 @@ def test_x_t_conditional_average_outcomes(outcome_kind, is_oos, request):
observed_outcomes_train,
treatment_train,
synchronize_cross_fitting=False,
n_jobs_base_learners=-1,
)
xlearner.fit(
covariates_train,
observed_outcomes_train,
treatment_train,
synchronize_cross_fitting=False,
n_jobs_base_learners=-1,
)

if not is_oos:
Expand Down Expand Up @@ -707,7 +711,7 @@ def test_model_reusage(outcome_kind, request):
n_variants=len(np.unique(treatment)),
nuisance_model_params=nuisance_learner_params,
)
tlearner.fit(covariates, observed_outcomes, treatment)
tlearner.fit(covariates, observed_outcomes, treatment, n_jobs_base_learners=-1)
xlearner = XLearner(
is_classification=is_classification,
n_variants=len(np.unique(treatment)),
Expand All @@ -731,7 +735,7 @@ def test_model_reusage(outcome_kind, request):
tlearner_pred_before_refitting = tlearner.predict_conditional_average_outcomes(
covariates, False
)
xlearner.fit(covariates, observed_outcomes, treatment)
xlearner.fit(covariates, observed_outcomes, treatment, n_jobs_base_learners=-1)
np.testing.assert_allclose(
tlearner.predict_conditional_average_outcomes(covariates, False),
tlearner_pred_before_refitting,
Expand Down
2 changes: 1 addition & 1 deletion tests/test_metalearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -988,7 +988,7 @@ def test_validate_n_folds_synchronize(n_folds, success):

@pytest.mark.parametrize(
"implementation",
[TLearner],
[TLearner, XLearner, RLearner, DRLearner],
)
def test_n_jobs_base_learners(implementation, rng):
n_variants = 5
Expand Down