Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add tests for index_matrix and index_vector #89

Merged
merged 1 commit into from
Aug 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions metalearners/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@


def safe_len(X: Matrix) -> int:
"""Determine the length of a Matrix."""
if scipy.sparse.issparse(X):
return X.shape[0]
return len(X)
Expand Down
59 changes: 59 additions & 0 deletions tests/test__utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import pytest
from glum import GeneralizedLinearRegressor, GeneralizedLinearRegressorCV
from lightgbm import LGBMClassifier, LGBMRegressor
from scipy.sparse import csr_matrix
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.linear_model import LinearRegression
from xgboost import XGBClassifier, XGBRegressor
Expand All @@ -20,6 +21,8 @@
convert_treatment,
function_has_argument,
get_linear_dimension,
index_matrix,
index_vector,
supports_categoricals,
validate_all_vectors_same_index,
validate_model_and_predict_method,
Expand Down Expand Up @@ -345,3 +348,59 @@ def test_validate_valid_treatment_variant_not_control(
else:
with pytest.raises(ValueError, match="variant"):
validate_valid_treatment_variant_not_control(treatment_variant, n_variants)


@pytest.mark.parametrize("matrix_backend", [np.ndarray, pd.DataFrame, csr_matrix])
@pytest.mark.parametrize("rows_backend", [np.array, pd.Series])
def test_index_matrix(matrix_backend, rows_backend):
n_samples = 10
if matrix_backend == np.ndarray:
matrix = np.array(list(range(n_samples))).reshape((-1, 1))
elif matrix_backend == pd.DataFrame:
# We make sure that the index is not equal to the row number.
matrix = pd.DataFrame(
list(range(n_samples)), index=list(range(20, 20 + n_samples))
)
elif matrix_backend == csr_matrix:
matrix = csr_matrix(np.array(list(range(n_samples))).reshape((-1, 1)))
else:
raise ValueError()
rows = rows_backend([1, 4, 5])
result = index_matrix(matrix=matrix, rows=rows)

assert isinstance(result, matrix_backend)
assert result.shape[1] == matrix.shape[1]

if isinstance(result, pd.DataFrame):
processed_result = result.values[:, 0]
else:
processed_result = result[:, 0]

expected = np.array([1, 4, 5])
assert (processed_result == expected).sum() == len(expected)


@pytest.mark.parametrize("vector_backend", [np.ndarray, pd.Series])
@pytest.mark.parametrize("rows_backend", [np.array, pd.Series])
def test_index_vector(vector_backend, rows_backend):
n_samples = 10
if vector_backend == np.ndarray:
vector = np.array(list(range(n_samples)))
elif vector_backend == pd.Series:
# We make sure that the index is not equal to the row number.
vector = pd.Series(
list(range(n_samples)), index=list(range(20, 20 + n_samples))
)
else:
raise ValueError()

rows = rows_backend([1, 4, 5])

result = index_vector(vector=vector, rows=rows)
assert isinstance(result, vector_backend)

if isinstance(result, pd.Series):
result = result.values

expected = np.array([1, 4, 5])
assert (result == expected).all()
Loading