Skip to content

Commit

Permalink
Updated README
Browse files Browse the repository at this point in the history
updated links for release 0.9.5
adjusted publication links
  • Loading branch information
QueensGambit authored Aug 26, 2021
1 parent 5207d88 commit 87672f0
Showing 1 changed file with 41 additions and 8 deletions.
49 changes: 41 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -74,19 +74,18 @@ We provide binary releases for the following plattforms:

Operating System | Backend | Compatible with
--- | --- | ---
Linux | [**CUDA 11.2, cuDNN 8.1.1.33, TensorRT-7.2.3.4**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.0/CrazyAra_ClassicAra_0.9.0_Linux_TensorRT.zip) | NVIDIA GPUs
Linux | [**MXNet 1.8.0, Intel oneAPI MKL 2021.2.0**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.0/CrazyAra_ClassicAra_0.9.0_Linux_MKL.zip) | Intel CPUs
Windows | [**CUDA 11.2, cuDNN 8.1.1.33, TensorRT-7.2.3.4**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.0/CrazyAra_ClassicAra_0.9.0_Win_TensorRT.zip) | NVIDIA GPUs
Windows | [**MXNet-20190919, Intel MKL 20190502**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.0/CrazyAra_ClassicAra_0.9.0_Win_MKL.zip ) | Intel CPUs
Mac | [**MXNet 1.8.0, Intel oneAPI MKL 2021.2.0**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.0/CrazyAra_ClassicAra_0.9.0_Mac_MKL_post1.zip) | Mac-Books
Linux | [**CUDA 11.3, cuDNN 8.2.1, TensorRT-8.0.1**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.5/CrazyAra_ClassicAra_MultiAra_0.9.5_Linux_TensorRT.zip) | NVIDIA GPUs
Linux | [**MXNet 1.8.0, Intel oneAPI MKL 2021.2.0**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.5/CrazyAra_ClassicAra_MultiAra_0.9.5_Linux_MKL.zip) | Intel CPUs
Windows | [**CUDA 11.3, cuDNN 8.2.1, TensorRT-8.0.1**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.5/CrazyAra_ClassicAra_MultiAra_0.9.5_Win_TensorRT.zip) | NVIDIA GPUs
Windows | [**MXNet 1.8.0, Intel oneAPI MKL 2021.2.0**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.5/CrazyAra_ClassicAra_MultiAra_0.9.5_Win_MKL.zip ) | Intel CPUs
Mac | [**MXNet 1.8.0, Intel oneAPI MKL 2021.2.0**](https://github.com/QueensGambit/CrazyAra/releases/download/0.9.5/CrazyAra_ClassicAra_MultiAra_0.9.5_Mac_MKL_post1.zip) | Mac-Books

The current _CrazyAra_ release and all its previous versions can also be found at [releases](https://github.com/QueensGambit/CrazyAra/releases).

### Models

The extracted model should be placed in the same directory as the engine executable.
The directory can be changed by adjusting the UCI-parameter `Model_Directory`.
A default model is included for [**releases >= 0.8.0**](https://github.com/QueensGambit/CrazyAra/releases/).
The extracted model should be placed in the directory reltative to the engine executable.
The default directory is indicated and can be changed by adjusting the UCI-parameter `Model_Directory`.

More information about the different models can be found in the [wiki](https://github.com/QueensGambit/CrazyAra-Engine/wiki/Model-description).

Expand Down Expand Up @@ -207,6 +206,22 @@ For details about the GPL v3 license, refer to the file [LICENSE](https://github
}
```

## M.Sc. Thesis

* M. Gehrke: **Assessing Popular Chess Variants Using Deep Reinforcement Learning**, [pdf](https://ml-research.github.io/papers/gehrke2021assessing.pdf)
```latex
@mastersthesis{gehrke2021assessing,
title = { Assessing Popular Chess Variants Using Deep Reinforcement Learning },
author = { Maximilian Alexander Gehrke },
year = { 2021 },
type = { M.Sc. },
crossref = { https://github.com/QueensGambit/CrazyAra },
school = { TU Darmstadt },
pages = { 94 },
month = { jul }
}
```

* J. Czech: **Deep Reinforcement Learning for Crazyhouse**, [pdf](https://ml-research.github.io/papers/czech2019deep.pdf)
```latex
@mastersthesis{czech2019deep,
Expand All @@ -220,3 +235,21 @@ For details about the GPL v3 license, refer to the file [LICENSE](https://github
month = { dec }
}
```



## B.Sc. Thesis

* M. Langer: **Evaluation of Monte-Carlo Tree Search for Xiangqi**, [pdf](https://ml-research.github.io/papers/langer2021xiangqi.pdf)
```latex
@bachelorthesis{langer2021eval,
title = { Evaluation of Monte-Carlo Tree Search for Xiangqi },
author = { Maximilian Langer },
year = { 2021 },
type = { B.Sc. },
crossref = { https://github.com/QueensGambit/CrazyAra },
school = { TU Darmstadt },
pages = { 45 },
month = { apr }
}
```

0 comments on commit 87672f0

Please sign in to comment.