Skip to content

RiccardoZuppetti/Master-Thesis

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ADHERENT: Learning Human-like Trajectory Generators for Whole-body Control of Humanoid Robots

P. M. Viceconte, R. Camoriano, G. Romualdi, D. Ferigo, S. Dafarra, S. Traversaro, G. Oriolo, L. Rosasco and D. Pucci, "ADHERENT: Learning Human-like Trajectory Generators for Whole-body Control of Humanoid Robots" in IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2779-2886, April 2022, doi: 10.1109/LRA.2022.3141658

ADHERENT.Learning.Human-like.Trajectory.Generators.for.Whole-body.Control.of.Humanoid.Robots.mp4

IEEE Robotics and Automation Letters

Installation

In order to reproduce the results related to this work, please configure your setup by following the ADHERENT setup configuration wiki and then follow one or more sections from the ADHERENT scripts execution wiki.

Citing this work

If you find the work useful, please consider citing:

@ARTICLE{9676410,
  author={Viceconte, Paolo Maria and Camoriano, Raffaello and Romualdi, Giulio and Ferigo, Diego and Dafarra, Stefano and Traversaro, Silvio and Oriolo, Giuseppe and Rosasco, Lorenzo and Pucci, Daniele},
  journal={IEEE Robotics and Automation Letters},
  title={ADHERENT: Learning Human-like Trajectory Generators for Whole-body Control of Humanoid Robots},
  year={2022},
  volume={7},
  number={2},
  pages={2779-2886},
  doi={10.1109/LRA.2022.3141658}}

Maintainer

This repository is maintained by:

@paolo-viceconte

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.0%
  • Dockerfile 2.0%