Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Apple silicon workaround #196

Merged
merged 9 commits into from
Mar 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/RMPI/RMPI.jl
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ const mpi_registry = Dict{Int,Any}()
abstract type DistributeStrategy end

include("mpidata.jl")
include("multiscalar.jl")
include("helpers.jl")
include("noexchange.jl")
include("pointtopoint.jl")
Expand Down
2 changes: 1 addition & 1 deletion src/RMPI/helpers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ end

function sort_into_targets!(dtarget::MPIData, w::AbstractDVec, stats)
# single threaded MPI version
mpi_combine_walkers!(dtarget,w) # combine walkers from different MPI ranks
mpi_combine_walkers!(dtarget, w) # combine walkers from different MPI ranks
res_stats = MPI.Allreduce(Rimu.MultiScalar(stats), +, dtarget.comm)
return dtarget, w, res_stats
end
Expand Down
21 changes: 20 additions & 1 deletion src/RMPI/mpidata.jl
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,26 @@ end

function Base.mapreduce(f, op, it::MPIDataIterator; kwargs...)
res = mapreduce(f, op, it.iter; kwargs...)
return MPI.Allreduce(res, op, it.data.comm)
T = typeof(res)
if T <: Bool # MPI.jl does not support Bool reductions
res = convert(UInt8, res)
end
return T(MPI.Allreduce(res, op, it.data.comm))
end

# Special case for `sum`, which uses a custom (type-widening) reduction operator `add_sum`.
# Replacing it by `+` is necessary for non-Intel architectures due to a limitation of
# MPI.jl. On Intel processors, it might be more perfomant.
# see https://github.com/JuliaParallel/MPI.jl/issues/404
function Base.mapreduce(f, op::typeof(Base.add_sum), it::MPIDataIterator; kwargs...)
res = mapreduce(f, op, it.iter; kwargs...)
return MPI.Allreduce(res, +, it.data.comm)
end

# Special case for `prod`, which uses a custom (type-widening) reduction operator `mul_prod`
function Base.mapreduce(f, op::typeof(Base.mul_prod), it::MPIDataIterator; kwargs...)
res = mapreduce(f, op, it.iter; kwargs...)
return MPI.Allreduce(res, *, it.data.comm)
end

Base.IteratorSize(::MPIDataIterator) = Base.SizeUnknown()
Expand Down
10 changes: 10 additions & 0 deletions src/RMPI/multiscalar.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
# Make MPI reduction of a `MultiScalar` work on non-Intel processors.
# The `MultiScalar` is converted into a vector before sending through MPI.Allreduce.
# Testing shows that this is about the same speed or even a bit faster on Intel processors
# than reducing the MultiScalar directly via a custom reduction operator.
# Defining the method in RMPI is strictly type piracy as MultiScalar belongs to Rimu and
# not to RMPI. Might clean this up later.
function MPI.Allreduce(ms::Rimu.MultiScalar{T}, op, comm::MPI.Comm) where {T<:Tuple}
result_vector = MPI.Allreduce([ms...], op, comm)
return Rimu.MultiScalar(T(result_vector))
end
1 change: 1 addition & 0 deletions src/helpers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ end
MultiScalar(args...) = MultiScalar(args)
MultiScalar(v::SVector) = MultiScalar(Tuple(v))
MultiScalar(m::MultiScalar) = m
MultiScalar{T}(m::MultiScalar{T}) where T<:Tuple = m
MultiScalar(arg) = MultiScalar((arg,))

Base.getindex(m::MultiScalar, i) = m.tuple[i]
Expand Down
22 changes: 11 additions & 11 deletions test/RMPI.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,17 +6,17 @@ using Test

@testset "DistributeStrategies" begin
# `DistributeStrategy`s
ham = HubbardReal1D(BoseFS((1,2,3)))
ham = HubbardReal1D(BoseFS((1, 2, 3)))
for setup in [RMPI.mpi_no_exchange, RMPI.mpi_all_to_all, RMPI.mpi_point_to_point]
dv = DVec(starting_address(ham)=>10; style=IsDynamicSemistochastic())
dv = DVec(starting_address(ham) => 10; style=IsDynamicSemistochastic())
v = MPIData(dv; setup)
df, state = lomc!(ham,v)
df, state = lomc!(ham, v)
@test size(df) == (100, 12)
end
# need to do mpi_one_sided separately
dv = DVec(starting_address(ham)=>10; style=IsDynamicSemistochastic())
v = RMPI.mpi_one_sided(dv; capacity = 1000)
df, state = lomc!(ham,v)
dv = DVec(starting_address(ham) => 10; style=IsDynamicSemistochastic())
v = RMPI.mpi_one_sided(dv; capacity=1000)
df, state = lomc!(ham, v)
@test size(df) == (100, 12)
end

Expand All @@ -29,13 +29,13 @@ end
counts = zeros(Int, k)
displs = zeros(Int, k)

RMPI.sort_and_count!(counts, displs, vals, ordfun.(vals), (0, k-1))
RMPI.sort_and_count!(counts, displs, vals, ordfun.(vals), (0, k - 1))
@test issorted(vals, by=ordfun)
@test sum(counts) == l

for i in 0:(k - 1)
c = counts[i + 1]
d = displs[i + 1]
for i in 0:(k-1)
c = counts[i+1]
d = displs[i+1]
r = (1:c) .+ d
ords = ordfun.(vals)
@test all(ords[r] .== i)
Expand Down Expand Up @@ -79,7 +79,7 @@ end
@testset "dot" begin
@test dot(dv1, dv2) == 0
@test dot(dv1, dv1) == dot(localpart(dv1), dv1)
rand_ham = MatrixHamiltonian(rand(ComplexF64, 4,4))
rand_ham = MatrixHamiltonian(rand(ComplexF64, 4, 4))
ldv1 = localpart(dv1)
@test norm(dot(dv1, rand_ham, dv1)) ≈ norm(dot(ldv1, rand_ham, ldv1))
end
Expand Down
14 changes: 8 additions & 6 deletions test/mpi_runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ end
end
@testset "Single component $type" begin
for i in 1:N_REPEATS
add = BoseFS((0,0,10,0,0))
add = BoseFS((0, 0, 10, 0, 0))
H = HubbardMom1D(add)
Random.seed!(7350 * i)
v, dv = setup_dv(
Expand All @@ -98,7 +98,7 @@ end
@test sum(values(v)) ≈ sum(values(dv))
f((k, v)) = (k == add) + v > 0
@test mapreduce(f, |, pairs(v); init=true) ==
mapreduce(f, |, pairs(dv); init=true)
mapreduce(f, |, pairs(dv); init=true)
end

@testset "Operations" begin
Expand Down Expand Up @@ -127,7 +127,7 @@ end
end
@testset "Two-component $type" begin
for i in 1:N_REPEATS
add = BoseFS2C((0,0,10,0,0), (0,0,2,0,0))
add = BoseFS2C((0, 0, 10, 0, 0), (0, 0, 2, 0, 0))
H = BoseHubbardMom1D2C(add)
Random.seed!(7350 * i)
v, dv = setup_dv(
Expand Down Expand Up @@ -225,7 +225,7 @@ end
(RMPI.mpi_one_sided, (; capacity=1000)),
)
@testset "Regular with $setup and post-steps" begin
H = HubbardReal1D(BoseFS((1,1,1,1,1,1,1)); u=6.0)
H = HubbardReal1D(BoseFS((1, 1, 1, 1, 1, 1, 1)); u=6.0)
dv = MPIData(
DVec(starting_address(H) => 3; style=IsDynamicSemistochastic());
setup,
Expand Down Expand Up @@ -253,7 +253,7 @@ end
@test all(0 .≤ df.loneliness .≤ 1)
end
@testset "Initiator with $setup" begin
H = HubbardMom1D(BoseFS((0,0,0,7,0,0,0)); u=6.0)
H = HubbardMom1D(BoseFS((0, 0, 0, 7, 0, 0, 0)); u=6.0)
dv = MPIData(
InitiatorDVec(starting_address(H) => 3);
setup,
Expand Down Expand Up @@ -295,7 +295,9 @@ end

# Make sure all ranks came this far.
@testset "Finish" begin
@test MPI.Allreduce(true, &, mpi_comm())
# MPI.jl currently doesn't properly map logical operators (MPI v0.20.8)
@test MPI.Allreduce(true, MPI.LAND, mpi_comm())
# @test MPI.Allreduce(true, &, mpi_comm())
end
end

Expand Down