-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8b2c7b4
commit f8a3e93
Showing
3 changed files
with
407 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,312 @@ | ||
# GPUtil - GPU utilization | ||
# | ||
# A Python module for programmically getting the GPU utilization from NVIDA GPUs using nvidia-smi | ||
# | ||
# Author: Anders Krogh Mortensen (anderskm) | ||
# Date: 16 January 2017 | ||
# Web: https://github.com/anderskm/gputil | ||
# | ||
# LICENSE | ||
# | ||
# MIT License | ||
# | ||
# Copyright (c) 2017 anderskm | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
from subprocess import Popen, PIPE | ||
import shutil | ||
import os | ||
import math | ||
import random | ||
import time | ||
import sys | ||
import platform | ||
|
||
|
||
__version__ = '1.4.0' | ||
|
||
class GPU: | ||
def __init__(self, ID, uuid, load, memoryTotal, memoryUsed, memoryFree, driver, gpu_name, serial, display_mode, display_active, temp_gpu): | ||
self.id = ID | ||
self.uuid = uuid | ||
self.load = load | ||
self.memoryUtil = float(memoryUsed)/float(memoryTotal) | ||
self.memoryTotal = memoryTotal | ||
self.memoryUsed = memoryUsed | ||
self.memoryFree = memoryFree | ||
self.driver = driver | ||
self.name = gpu_name | ||
self.serial = serial | ||
self.display_mode = display_mode | ||
self.display_active = display_active | ||
self.temperature = temp_gpu | ||
|
||
def safeFloatCast(strNumber): | ||
try: | ||
number = float(strNumber) | ||
except ValueError: | ||
number = float('nan') | ||
return number | ||
|
||
def getGPUs(): | ||
if platform.system() == "Windows": | ||
# If the platform is Windows and nvidia-smi | ||
# could not be found from the environment path, | ||
# try to find it from system drive with default installation path | ||
nvidia_smi = shutil.which('nvidia-smi') | ||
if nvidia_smi is None: | ||
nvidia_smi = "%s\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe" % os.environ['systemdrive'] | ||
else: | ||
nvidia_smi = "nvidia-smi" | ||
|
||
# Get ID, processing and memory utilization for all GPUs | ||
try: | ||
p = Popen([nvidia_smi,"--query-gpu=index,uuid,utilization.gpu,memory.total,memory.used,memory.free,driver_version,name,gpu_serial,display_active,display_mode,temperature.gpu", "--format=csv,noheader,nounits"], stdout=PIPE) | ||
stdout, stderror = p.communicate() | ||
except: | ||
return [] | ||
output = stdout.decode('UTF-8') | ||
# output = output[2:-1] # Remove b' and ' from string added by python | ||
#print(output) | ||
## Parse output | ||
# Split on line break | ||
lines = output.split(os.linesep) | ||
#print(lines) | ||
numDevices = len(lines)-1 | ||
GPUs = [] | ||
for g in range(numDevices): | ||
line = lines[g] | ||
#print(line) | ||
vals = line.split(', ') | ||
#print(vals) | ||
for i in range(12): | ||
# print(vals[i]) | ||
if (i == 0): | ||
deviceIds = int(vals[i]) | ||
elif (i == 1): | ||
uuid = vals[i] | ||
elif (i == 2): | ||
gpuUtil = safeFloatCast(vals[i])/100 | ||
elif (i == 3): | ||
memTotal = safeFloatCast(vals[i]) | ||
elif (i == 4): | ||
memUsed = safeFloatCast(vals[i]) | ||
elif (i == 5): | ||
memFree = safeFloatCast(vals[i]) | ||
elif (i == 6): | ||
driver = vals[i] | ||
elif (i == 7): | ||
gpu_name = vals[i] | ||
elif (i == 8): | ||
serial = vals[i] | ||
elif (i == 9): | ||
display_active = vals[i] | ||
elif (i == 10): | ||
display_mode = vals[i] | ||
elif (i == 11): | ||
temp_gpu = safeFloatCast(vals[i]); | ||
GPUs.append(GPU(deviceIds, uuid, gpuUtil, memTotal, memUsed, memFree, driver, gpu_name, serial, display_mode, display_active, temp_gpu)) | ||
return GPUs # (deviceIds, gpuUtil, memUtil) | ||
|
||
|
||
def getAvailable(order = 'first', limit=1, maxLoad=0.5, maxMemory=0.5, memoryFree=0, includeNan=False, excludeID=[], excludeUUID=[]): | ||
# order = first | last | random | load | memory | ||
# first --> select the GPU with the lowest ID (DEFAULT) | ||
# last --> select the GPU with the highest ID | ||
# random --> select a random available GPU | ||
# load --> select the GPU with the lowest load | ||
# memory --> select the GPU with the most memory available | ||
# limit = 1 (DEFAULT), 2, ..., Inf | ||
# Limit sets the upper limit for the number of GPUs to return. E.g. if limit = 2, but only one is available, only one is returned. | ||
|
||
# Get device IDs, load and memory usage | ||
GPUs = getGPUs() | ||
|
||
# Determine, which GPUs are available | ||
GPUavailability = getAvailability(GPUs, maxLoad=maxLoad, maxMemory=maxMemory, memoryFree=memoryFree, includeNan=includeNan, excludeID=excludeID, excludeUUID=excludeUUID) | ||
availAbleGPUindex = [idx for idx in range(0,len(GPUavailability)) if (GPUavailability[idx] == 1)] | ||
# Discard unavailable GPUs | ||
GPUs = [GPUs[g] for g in availAbleGPUindex] | ||
|
||
# Sort available GPUs according to the order argument | ||
if (order == 'first'): | ||
GPUs.sort(key=lambda x: float('inf') if math.isnan(x.id) else x.id, reverse=False) | ||
elif (order == 'last'): | ||
GPUs.sort(key=lambda x: float('-inf') if math.isnan(x.id) else x.id, reverse=True) | ||
elif (order == 'random'): | ||
GPUs = [GPUs[g] for g in random.sample(range(0,len(GPUs)),len(GPUs))] | ||
elif (order == 'load'): | ||
GPUs.sort(key=lambda x: float('inf') if math.isnan(x.load) else x.load, reverse=False) | ||
elif (order == 'memory'): | ||
GPUs.sort(key=lambda x: float('inf') if math.isnan(x.memoryUtil) else x.memoryUtil, reverse=False) | ||
|
||
# Extract the number of desired GPUs, but limited to the total number of available GPUs | ||
GPUs = GPUs[0:min(limit, len(GPUs))] | ||
|
||
# Extract the device IDs from the GPUs and return them | ||
deviceIds = [gpu.id for gpu in GPUs] | ||
|
||
return deviceIds | ||
|
||
#def getAvailability(GPUs, maxLoad = 0.5, maxMemory = 0.5, includeNan = False): | ||
# # Determine, which GPUs are available | ||
# GPUavailability = np.zeros(len(GPUs)) | ||
# for i in range(len(GPUs)): | ||
# if (GPUs[i].load < maxLoad or (includeNan and np.isnan(GPUs[i].load))) and (GPUs[i].memoryUtil < maxMemory or (includeNan and np.isnan(GPUs[i].memoryUtil))): | ||
# GPUavailability[i] = 1 | ||
|
||
def getAvailability(GPUs, maxLoad=0.5, maxMemory=0.5, memoryFree=0, includeNan=False, excludeID=[], excludeUUID=[]): | ||
# Determine, which GPUs are available | ||
GPUavailability = [1 if (gpu.memoryFree>=memoryFree) and (gpu.load < maxLoad or (includeNan and math.isnan(gpu.load))) and (gpu.memoryUtil < maxMemory or (includeNan and math.isnan(gpu.memoryUtil))) and ((gpu.id not in excludeID) and (gpu.uuid not in excludeUUID)) else 0 for gpu in GPUs] | ||
return GPUavailability | ||
|
||
def getFirstAvailable(order = 'first', maxLoad=0.5, maxMemory=0.5, attempts=1, interval=900, verbose=False, includeNan=False, excludeID=[], excludeUUID=[]): | ||
#GPUs = getGPUs() | ||
#firstAvailableGPU = np.NaN | ||
#for i in range(len(GPUs)): | ||
# if (GPUs[i].load < maxLoad) & (GPUs[i].memory < maxMemory): | ||
# firstAvailableGPU = GPUs[i].id | ||
# break | ||
#return firstAvailableGPU | ||
for i in range(attempts): | ||
if (verbose): | ||
print('Attempting (' + str(i+1) + '/' + str(attempts) + ') to locate available GPU.') | ||
# Get first available GPU | ||
available = getAvailable(order=order, limit=1, maxLoad=maxLoad, maxMemory=maxMemory, includeNan=includeNan, excludeID=excludeID, excludeUUID=excludeUUID) | ||
# If an available GPU was found, break for loop. | ||
if (available): | ||
if (verbose): | ||
print('GPU ' + str(available) + ' located!') | ||
break | ||
# If this is not the last attempt, sleep for 'interval' seconds | ||
if (i != attempts-1): | ||
time.sleep(interval) | ||
# Check if an GPU was found, or if the attempts simply ran out. Throw error, if no GPU was found | ||
if (not(available)): | ||
raise RuntimeError('Could not find an available GPU after ' + str(attempts) + ' attempts with ' + str(interval) + ' seconds interval.') | ||
|
||
# Return found GPU | ||
return available | ||
|
||
|
||
def showUtilization(all=False, attrList=None, useOldCode=False): | ||
GPUs = getGPUs() | ||
if (all): | ||
if (useOldCode): | ||
print(' ID | Name | Serial | UUID || GPU util. | Memory util. || Memory total | Memory used | Memory free || Display mode | Display active |') | ||
print('------------------------------------------------------------------------------------------------------------------------------') | ||
for gpu in GPUs: | ||
print(' {0:2d} | {1:s} | {2:s} | {3:s} || {4:3.0f}% | {5:3.0f}% || {6:.0f}MB | {7:.0f}MB | {8:.0f}MB || {9:s} | {10:s}'.format(gpu.id,gpu.name,gpu.serial,gpu.uuid,gpu.load*100,gpu.memoryUtil*100,gpu.memoryTotal,gpu.memoryUsed,gpu.memoryFree,gpu.display_mode,gpu.display_active)) | ||
else: | ||
attrList = [[{'attr':'id','name':'ID'}, | ||
{'attr':'name','name':'Name'}, | ||
{'attr':'serial','name':'Serial'}, | ||
{'attr':'uuid','name':'UUID'}], | ||
[{'attr':'temperature','name':'GPU temp.','suffix':'C','transform': lambda x: x,'precision':0}, | ||
{'attr':'load','name':'GPU util.','suffix':'%','transform': lambda x: x*100,'precision':0}, | ||
{'attr':'memoryUtil','name':'Memory util.','suffix':'%','transform': lambda x: x*100,'precision':0}], | ||
[{'attr':'memoryTotal','name':'Memory total','suffix':'MB','precision':0}, | ||
{'attr':'memoryUsed','name':'Memory used','suffix':'MB','precision':0}, | ||
{'attr':'memoryFree','name':'Memory free','suffix':'MB','precision':0}], | ||
[{'attr':'display_mode','name':'Display mode'}, | ||
{'attr':'display_active','name':'Display active'}]] | ||
|
||
else: | ||
if (useOldCode): | ||
print(' ID GPU MEM') | ||
print('--------------') | ||
for gpu in GPUs: | ||
print(' {0:2d} {1:3.0f}% {2:3.0f}%'.format(gpu.id, gpu.load*100, gpu.memoryUtil*100)) | ||
elif attrList is None: | ||
# if `attrList` was not specified, use the default one | ||
attrList = [[{'attr':'id','name':'ID'}, | ||
{'attr':'load','name':'GPU','suffix':'%','transform': lambda x: x*100,'precision':0}, | ||
{'attr':'memoryUtil','name':'MEM','suffix':'%','transform': lambda x: x*100,'precision':0}], | ||
] | ||
|
||
if (not useOldCode): | ||
if (attrList is not None): | ||
headerString = '' | ||
GPUstrings = ['']*len(GPUs) | ||
for attrGroup in attrList: | ||
#print(attrGroup) | ||
for attrDict in attrGroup: | ||
headerString = headerString + '| ' + attrDict['name'] + ' ' | ||
headerWidth = len(attrDict['name']) | ||
minWidth = len(attrDict['name']) | ||
|
||
attrPrecision = '.' + str(attrDict['precision']) if ('precision' in attrDict.keys()) else '' | ||
attrSuffix = str(attrDict['suffix']) if ('suffix' in attrDict.keys()) else '' | ||
attrTransform = attrDict['transform'] if ('transform' in attrDict.keys()) else lambda x : x | ||
for gpu in GPUs: | ||
attr = getattr(gpu,attrDict['attr']) | ||
|
||
attr = attrTransform(attr) | ||
|
||
if (isinstance(attr,float)): | ||
attrStr = ('{0:' + attrPrecision + 'f}').format(attr) | ||
elif (isinstance(attr,int)): | ||
attrStr = ('{0:d}').format(attr) | ||
elif (isinstance(attr,str)): | ||
attrStr = attr; | ||
elif (sys.version_info[0] == 2): | ||
if (isinstance(attr,unicode)): | ||
attrStr = attr.encode('ascii','ignore') | ||
else: | ||
raise TypeError('Unhandled object type (' + str(type(attr)) + ') for attribute \'' + attrDict['name'] + '\'') | ||
|
||
attrStr += attrSuffix | ||
|
||
minWidth = max(minWidth,len(attrStr)) | ||
|
||
headerString += ' '*max(0,minWidth-headerWidth) | ||
|
||
minWidthStr = str(minWidth - len(attrSuffix)) | ||
|
||
for gpuIdx,gpu in enumerate(GPUs): | ||
attr = getattr(gpu,attrDict['attr']) | ||
|
||
attr = attrTransform(attr) | ||
|
||
if (isinstance(attr,float)): | ||
attrStr = ('{0:'+ minWidthStr + attrPrecision + 'f}').format(attr) | ||
elif (isinstance(attr,int)): | ||
attrStr = ('{0:' + minWidthStr + 'd}').format(attr) | ||
elif (isinstance(attr,str)): | ||
attrStr = ('{0:' + minWidthStr + 's}').format(attr); | ||
elif (sys.version_info[0] == 2): | ||
if (isinstance(attr,unicode)): | ||
attrStr = ('{0:' + minWidthStr + 's}').format(attr.encode('ascii','ignore')) | ||
else: | ||
raise TypeError('Unhandled object type (' + str(type(attr)) + ') for attribute \'' + attrDict['name'] + '\'') | ||
|
||
attrStr += attrSuffix | ||
|
||
GPUstrings[gpuIdx] += '| ' + attrStr + ' ' | ||
|
||
headerString = headerString + '|' | ||
for gpuIdx,gpu in enumerate(GPUs): | ||
GPUstrings[gpuIdx] += '|' | ||
|
||
headerSpacingString = '-' * len(headerString) | ||
print(headerString) | ||
print(headerSpacingString) | ||
for GPUstring in GPUstrings: | ||
print(GPUstring) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
# GPUtil - GPU utilization | ||
# | ||
# A Python module for programmically getting the GPU utilization from NVIDA GPUs using nvidia-smi | ||
# | ||
# Author: Anders Krogh Mortensen (anderskm) | ||
# Date: 16 January 2017 | ||
# Web: https://github.com/anderskm/gputil | ||
# | ||
# LICENSE | ||
# | ||
# MIT License | ||
# | ||
# Copyright (c) 2017 anderskm | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
from .GPUtil import GPU, getGPUs, getAvailable, getAvailability, getFirstAvailable, showUtilization, __version__ |
Oops, something went wrong.