Skip to content

Commit

Permalink
Merge pull request #458 from djanibekov/sarawak_malay
Browse files Browse the repository at this point in the history
Closes #444  | Create dataset loader for Sarawak Malay
  • Loading branch information
yongzx authored Mar 6, 2024
2 parents 0a07693 + cb7f360 commit 4754bb5
Show file tree
Hide file tree
Showing 3 changed files with 180 additions and 0 deletions.
2 changes: 2 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -24,3 +24,5 @@ typing_extensions
scikit-learn==1.1.2
pyarrow
opencv-python>=4.9
textgrid==1.5
audiosegment==0.23.0
Empty file.
178 changes: 178 additions & 0 deletions seacrowd/sea_datasets/sarawak_malay/sarawak_malay.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from pathlib import Path
from typing import Dict, List, Tuple

import audiosegment
import datasets
import textgrid

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@INPROCEEDINGS{
10337314,
author={Rahim, Mohd Zulhafiz and Juan, Sarah Samson and Mohamad, Fitri Suraya},
booktitle={2023 International Conference on Asian Language Processing (IALP)},
title={Improving Speaker Diarization for Low-Resourced Sarawak Malay Language Conversational Speech Corpus},
year={2023},
pages={228-233},
keywords={Training;Oral communication;Data models;Usability;Speech processing;Testing;Speaker diarization;x-vectors;clustering;low-resource;auto-labeling;pseudo-labeling;unsupervised},
doi={10.1109/IALP61005.2023.10337314}}
"""

_DATASETNAME = "sarawak_malay"

_DESCRIPTION = """\
This is a Sarawak Malay conversation data for the purpose of speech technology research. \
At the moment, this is an experimental data and currently used for investigating \
speaker diarization. The data was collected by Faculty of Computer Science and \
Information Technology, Universiti Malaysia Sarawak. The data consists of 38 conversations \
that have been transcribed using Transcriber (see TextGrid folder), where each file \
contains two speakers. Each conversation was recorded by different individuals using microphones \
from mobile devices or laptops thus, different file formats were collected from the data collectors. \
All data was then standardized to mono, 16000Khz, wav format.
"""

_HOMEPAGE = "https://github.com/sarahjuan/sarawakmalay"

_LANGUAGES = ["zlm"]

_LICENSE = Licenses.CC0_1_0.value
_LOCAL = False

_URLS = {
_DATASETNAME: "https://github.com/sarahjuan/sarawakmalay/archive/refs/heads/main.zip",
}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.TEXT_TO_SPEECH]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "1.0.0"


class SarawakMalayDataset(datasets.GeneratorBasedBuilder):
"""This is experimental Sarawak Malay conversation data collected by \
Universiti Malaysia Sarawak for speech technology research, \
specifically speaker diarization. The data includes 38 conversations, \
each with two speakers, recorded on various devices and then standardized to mono, \
16000Khz, wav format."""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "sptext"

BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}",
),
]

DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"metadata": {
"malay_text": datasets.Value("string"),
},
}
)

elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.speech_text_features

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "sarawakmalay-main"),
"split": "train",
},
),
]

def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
id_counter = 0
filenames = filter(lambda x: x.endswith(".wav"), os.listdir(f"{filepath}/wav"))
filenames = map(lambda x: x.replace(".wav", ""), filenames)

os.makedirs(f"{filepath}/segmented", exist_ok=True)
for i, filename in enumerate(filenames):
info = textgrid.TextGrid.fromFile(f"{filepath}/TextGrid/{filename}.TextGrid")
if len(info) == 3:
sarawak_conversation, malay_conversation, speakers = info
else:
sarawak_conversation, malay_conversation, speakers, _ = info

audio_file = audiosegment.from_file(f"{filepath}/wav/{filename}.wav").resample(sample_rate_Hz=16000)

for sarawak_tg, malay_tg, speaker in zip(sarawak_conversation, malay_conversation, speakers):
start, end, text = sarawak_tg.minTime, sarawak_tg.maxTime, sarawak_tg.mark
malay_text = malay_tg.mark
speaker_id = speaker.mark

start_sec, end_sec = int(start * 1000), int(end * 1000)
segment = audio_file[start_sec:end_sec]
segement_filename = f"{filepath}/segmented/{filename}-{round(start, 0)}-{round(end, 0)}.wav"
segment.export(segement_filename, format="wav")

if self.config.schema == "source":
yield id_counter, {
"id": id_counter,
"speaker_id": speaker_id,
"path": f"{filepath}/wav/{filename}.wav",
"audio": segement_filename,
"text": text,
"metadata": {
"malay_text": malay_text,
},
}

elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
yield id_counter, {"id": id_counter, "speaker_id": speaker_id, "path": f"{filepath}/wav/{filename}.wav", "audio": segement_filename, "text": text, "metadata": {"speaker_age": None, "speaker_gender": None}}

id_counter += 1

0 comments on commit 4754bb5

Please sign in to comment.