#WiFi fingerprinting #WiFi indoor positioning #K-nearest neighbor algorithm
📦Indoor_positioning_system
┣ 📂img //Data Visualizations
┣ 📂lib //Supplementary Materials
┣ 📂src //Source Code
┃ ┣ 📂clean_data
┃ ┣ 📂raw_data
┃ ┣ 📄Step.1_Data_Cleaning.qmd
┃ ┣ 📄Step.1_Data_Cleaning.R
┃ ┣ 📄Step.2_Data_Analysis.qmd
┃ ┣ 📄Step.2_Data_Analysis.R
┃ ┣ 📄Step.3_Data_Visualization.qmd
┃ ┣ 📄Step.3_Data_Visualization.R
┃ ┗ 📄Step.99_Final_Complete_Code.R
┣ 📄LICENSE
┗ 📄README.md
Identify the physical location of indoor devices that are connected to the network.
- Create a model that takes a set of signal strengths of the relevant access points to a connected device.
- Predicts the physical location of that device.
- Quantify the accuracy and precision of the model.
RSSI Heat Map of All APs and Angles | RSSI Heat Map based on Fast Thin Plate Regression | RSSI Heat Map based on Kriging Method |
---|---|---|
Average Error Distance | Median Error Distance |
---|---|
2.517842 m |
1.902775 m |