Skip to content

Commit

Permalink
Port shooting tests from NeuralBVP
Browse files Browse the repository at this point in the history
  • Loading branch information
avik-pal committed Sep 23, 2023
1 parent 5715ec0 commit 47f0b19
Showing 1 changed file with 248 additions and 82 deletions.
330 changes: 248 additions & 82 deletions test/shooting/shooting_tests.jl
Original file line number Diff line number Diff line change
@@ -1,106 +1,272 @@
using BoundaryValueDiffEq, LinearAlgebra, OrdinaryDiffEq, Test

@info "Shooting method"
@testset "Basic Shooting Tests" begin
SOLVERS = [Shooting(Tsit5()), MultipleShooting(10, Tsit5())]

SOLVERS = [Shooting(Tsit5()), MultipleShooting(10, Tsit5())]
tspan = (0.0, 100.0)
u0 = [0.0, 1.0]

@info "Multi-Point BVProblem" # Not really but using that API
# Inplace
function f1!(du, u, p, t)
du[1] = u[2]
du[2] = -u[1]
return nothing
end

tspan = (0.0, 100.0)
u0 = [0.0, 1.0]
function bc1!(resid, sol, p, t)
t₀, t₁ = first(t), last(t)
resid[1] = sol(t₀)[1]
resid[2] = sol(t₁)[1] - 1
return nothing
end

# Inplace
function f1!(du, u, p, t)
du[1] = u[2]
du[2] = -u[1]
return nothing
end
bvp1 = BVProblem(f1!, bc1!, u0, tspan)
@test SciMLBase.isinplace(bvp1)
for solver in SOLVERS
resid_f = Array{Float64}(undef, 2)
sol = solve(bvp1, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
bc1!(resid_f, sol, nothing, sol.t)
@test norm(resid_f) < 1e-6
end

function bc1!(resid, sol, p, t)
t₀, t₁ = first(t), last(t)
resid[1] = sol(t₀)[1]
resid[2] = sol(t₁)[1] - 1
return nothing
end
# Out of Place
f1(u, p, t) = [u[2], -u[1]]

bvp1 = BVProblem(f1!, bc1!, u0, tspan)
@test SciMLBase.isinplace(bvp1)
for solver in SOLVERS
resid_f = Array{Float64}(undef, 2)
sol = solve(bvp1, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
bc1!(resid_f, sol, nothing, sol.t)
@test norm(resid_f) < 1e-6
end
function bc1(sol, p, t)
t₀, t₁ = first(t), last(t)
return [sol(t₀)[1], sol(t₁)[1] - 1]
end

# Out of Place
f1(u, p, t) = [u[2], -u[1]]
@test_throws SciMLBase.NonconformingFunctionsError BVProblem(f1!, bc1, u0, tspan)
@test_throws SciMLBase.NonconformingFunctionsError BVProblem(f1, bc1!, u0, tspan)

function bc1(sol, p, t)
t₀, t₁ = first(t), last(t)
return [sol(t₀)[1], sol(t₁)[1] - 1]
end
bvp2 = BVProblem(f1, bc1, u0, tspan)
@test !SciMLBase.isinplace(bvp2)
for solver in SOLVERS
sol = solve(bvp2, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
resid_f = bc1(sol, nothing, sol.t)
@test norm(resid_f) < 1e-6
end

@test_throws SciMLBase.NonconformingFunctionsError BVProblem(f1!, bc1, u0, tspan)
@test_throws SciMLBase.NonconformingFunctionsError BVProblem(f1, bc1!, u0, tspan)
# Inplace
function bc2!((resida, residb), (ua, ub), p)
resida[1] = ua[1]
residb[1] = ub[1] - 1
return nothing
end

bvp2 = BVProblem(f1, bc1, u0, tspan)
@test !SciMLBase.isinplace(bvp2)
for solver in SOLVERS
sol = solve(bvp2, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
resid_f = bc1(sol, nothing, sol.t)
@test norm(resid_f) < 1e-6
end
bvp3 = TwoPointBVProblem(f1!, bc2!, u0, tspan;
bcresid_prototype = (Array{Float64}(undef, 1), Array{Float64}(undef, 1)))
@test SciMLBase.isinplace(bvp3)
for solver in SOLVERS
sol = solve(bvp3, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
resid_f = (Array{Float64, 1}(undef, 1), Array{Float64, 1}(undef, 1))
bc2!(resid_f, (sol(tspan[1]), sol(tspan[2])), nothing)
if solver isa Shooting
@test_broken norm(resid_f) < 1e-6
@test norm(resid_f) < 1e-4
else
@test norm(resid_f) < 1e-6
end
end

@info "Two Point BVProblem" # Not really but using that API
# Out of Place
function bc2((ua, ub), p)
return ([ua[1]], [ub[1] - 1])
end

# Inplace
function bc2!((resida, residb), (ua, ub), p)
resida[1] = ua[1]
residb[1] = ub[1] - 1
return nothing
bvp4 = TwoPointBVProblem(f1, bc2, u0, tspan)
@test !SciMLBase.isinplace(bvp4)
for solver in SOLVERS
sol = solve(bvp4, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
resid_f = reduce(vcat, bc2((sol(tspan[1]), sol(tspan[2])), nothing))
@test norm(resid_f) < 1e-6
end
end

bvp3 = TwoPointBVProblem(f1!, bc2!, u0, tspan;
bcresid_prototype = (Array{Float64}(undef, 1), Array{Float64}(undef, 1)))
@test SciMLBase.isinplace(bvp3)
for solver in SOLVERS
sol = solve(bvp3, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
resid_f = (Array{Float64, 1}(undef, 1), Array{Float64, 1}(undef, 1))
bc2!(resid_f, (sol(tspan[1]), sol(tspan[2])), nothing)
if solver isa Shooting
@test_broken norm(resid_f) < 1e-6
@test norm(resid_f) < 1e-4
else
@testset "Shooting with Complex Values" begin
# Test for complex values
u0 = [0.0, 1.0] .+ 1im
bvp = BVProblem(f1!, bc1!, u0, tspan)
resid_f = Array{ComplexF64}(undef, 2)

nlsolve = NewtonRaphson(; autodiff = AutoFiniteDiff())
for solver in [Shooting(Tsit5(); nlsolve), MultipleShooting(10, Tsit5(); nlsolve)]
sol = solve(bvp, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
bc1!(resid_f, sol, nothing, sol.t)
@test norm(resid_f) < 1e-6
end
end

# Out of Place
function bc2((ua, ub), p)
return ([ua[1]], [ub[1] - 1])
end
@testset "Flow In a Channel" begin
function flow_in_a_channel!(du, u, p, t)
R, P = p
A, f′′, f′, f, h′, h, θ′, θ = u
du[1] = 0
du[2] = R * (f′^2 - f * f′′) - R * A
du[3] = f′′
du[4] = f′
du[5] = -R * f * h′ - 1
du[6] = h′
du[7] = -P * f * θ′
du[8] = θ′
end

function bc_flow!(resid, sol, p, tspan)
t₁, t₂ = extrema(tspan)
solₜ₁ = sol(t₁)
solₜ₂ = sol(t₂)
resid[1] = solₜ₁[4]
resid[2] = solₜ₁[3]
resid[3] = solₜ₂[4] - 1
resid[4] = solₜ₂[3]
resid[5] = solₜ₁[6]
resid[6] = solₜ₂[6]
resid[7] = solₜ₁[8]
resid[8] = solₜ₂[8] - 1
end

tspan = (0.0, 1.0)
p = [10.0, 7.0]
u0 = zeros(8)

flow_bvp = BVProblem{true}(flow_in_a_channel!, bc_flow!, u0, tspan, p)

sol_shooting = solve(flow_bvp,
Shooting(AutoTsit5(Rosenbrock23()), NewtonRaphson());
maxiters = 100)
@test SciMLBase.successful_retcode(sol_shooting)

resid = zeros(8)
bc_flow!(resid, sol_shooting, p, sol_shooting.t)
@test norm(resid, Inf) < 1e-6

bvp4 = TwoPointBVProblem(f1, bc2, u0, tspan)
@test !SciMLBase.isinplace(bvp4)
for solver in SOLVERS
sol = solve(bvp4, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
resid_f = reduce(vcat, bc2((sol(tspan[1]), sol(tspan[2])), nothing))
@test norm(resid_f) < 1e-6
sol_msshooting = solve(flow_bvp,
MultipleShooting(10, AutoTsit5(Rosenbrock23()); nlsolve = NewtonRaphson());
maxiters = 100)
@test SciMLBase.successful_retcode(sol_msshooting)

resid = zeros(8)
bc_flow!(resid, sol_msshooting, p, sol_msshooting.t)
@test norm(resid, Inf) < 1e-6
end

#Test for complex values
u0 = [0.0, 1.0] .+ 1im
bvp = BVProblem(f1!, bc1!, u0, tspan)
resid_f = Array{ComplexF64}(undef, 2)

nlsolve = NewtonRaphson(; autodiff = AutoFiniteDiff())
for solver in [Shooting(Tsit5(); nlsolve), MultipleShooting(10, Tsit5(); nlsolve)]
sol = solve(bvp, solver; abstol = 1e-6, reltol = 1e-6)
@test SciMLBase.successful_retcode(sol)
bc1!(resid_f, sol, nothing, sol.t)
@test norm(resid_f) < 1e-6
@testset "Ray Tracing BVP" begin
# Example 1.7 from
# "Numerical Solution to Boundary Value Problems for Ordinary Differential equations",
# 'Ascher, Mattheij, Russell'

# Earthquake happens at known position (x0, y0, z0)
# Earthquake is detected by seismograph at (xi, yi, zi)

# Find the path taken by the first ray that reached seismograph.
# i.e. given some velocity field finds the quickest path from
# (x0,y0,z0) to (xi, yi, zi)

# du = [dx, dy, dz, dξ, dη, dζ, dT, dS]
# du = [x, y, z, ξ, η, ζ, T, S]
# p = [ν(x,y,z), μ_x(x,y,z), μ_y(x,y,z), μ_z(x,y,z)]
@inline v(x, y, z, p) = 1 / (4 + cos(p[1] * x) + sin(p[2] * y) - cos(p[3] * z))
@inline ux(x, y, z, p) = -p[1] * sin(p[1] * x)
@inline uy(x, y, z, p) = p[2] * cos(p[2] * y)
@inline uz(x, y, z, p) = p[3] * sin(p[3] * z)

function ray_tracing(u, p, t)
du = similar(u)
ray_tracing!(du, u, p, t)
return du
end

function ray_tracing!(du, u, p, t)
x, y, z, ξ, η, ζ, T, S = u

nu = v(x, y, z, p) # Velocity of a sound wave, function of space;
μx = ux(x, y, z, p) # ∂(slowness)/∂x, function of space
μy = uy(x, y, z, p) # ∂(slowness)/∂y, function of space
μz = uz(x, y, z, p) # ∂(slowness)/∂z, function of space

du[1] = S * nu * ξ
du[2] = S * nu * η
du[3] = S * nu * ζ

du[4] = S * μx
du[5] = S * μy
du[6] = S * μz

du[7] = S / nu
du[8] = 0

return nothing
end

function ray_tracing_bc(sol, p, t)
res = similar(first(sol))
ray_tracing_bc!(res, sol, p, t)
return res
end

function ray_tracing_bc!(res, sol, p, t)
ua = sol(0.0)
ub = sol(1.0)
nu = v(ua[1], ua[2], ua[3], p) # Velocity of a sound wave, function of space;

res[1] = ua[1] - x0
res[2] = ua[2] - y0
res[3] = ua[3] - z0
res[4] = ua[7] # T(0) = 0
res[5] = ua[4]^2 + ua[5]^2 + ua[6]^2 - 1 / nu^2
res[6] = ub[1] - xi
res[7] = ub[2] - yi
res[8] = ub[3] - zi
return nothing
end

a = 0
b = 1
c = 2
x0 = 0
y0 = 0
z0 = 0
xi = 4
yi = 3
zi = 2.0
p = [a, b, c, x0, y0, z0, xi, yi, zi]

dx = xi - x0
dy = yi - y0
dz = zi - z0

u0 = zeros(8)
u0[1:3] .= 0 # position
u0[4] = dx / v(x0, y0, z0, p)
u0[5] = dy / v(x0, y0, z0, p)
u0[6] = dz / v(x0, y0, z0, p)
u0[8] = 1

tspan = (0.0, 1.0)

prob_oop = BVProblem{false}(ray_tracing, ray_tracing_bc, u0, tspan, p)
alg = MultipleShooting(16, AutoVern7(Rodas4P()); nlsolve = NewtonRaphson(),
grid_coarsening = Base.Fix2(div, 3))

sol = solve(prob_oop, alg; reltol = 1e-6, abstol = 1e-6)
@test SciMLBase.successful_retcode(sol.retcode)
resid = zeros(8)
ray_tracing_bc!(resid, sol, p, sol.t)
@test norm(resid, Inf) < 1e-6

prob_iip = BVProblem{true}(ray_tracing!, ray_tracing_bc!, u0, tspan, p)
alg = MultipleShooting(16, AutoVern7(Rodas4P()); nlsolve = NewtonRaphson(),
grid_coarsening = Base.Fix2(div, 3))

sol = solve(prob_iip, alg; reltol = 1e-6, abstol = 1e-6)
@test SciMLBase.successful_retcode(sol.retcode)
resid = zeros(8)
ray_tracing_bc!(resid, sol, p, sol.t)
@test norm(resid, Inf) < 1e-6
end

0 comments on commit 47f0b19

Please sign in to comment.