Skip to content

Commit

Permalink
docs: remove scatter of data points as it is in the recipe itself
Browse files Browse the repository at this point in the history
  • Loading branch information
sathvikbhagavan committed Jul 6, 2024
1 parent 50aa09d commit 62cd70f
Showing 1 changed file with 14 additions and 28 deletions.
42 changes: 14 additions & 28 deletions docs/src/methods.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,7 @@ This is a linear interpolation between the ends points of the interval of input

```@example tutorial
A = LinearInterpolation(u, t)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Quadratic Interpolation
Expand All @@ -36,8 +35,7 @@ forward-looking). It is continuous and piecewise differentiable.
```@example tutorial
A = QuadraticInterpolation(u, t) # same as QuadraticInterpolation(u,t,:Forward)
# alternatively: A = QuadraticInterpolation(u,t,:Backward)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Lagrange Interpolation
Expand All @@ -47,8 +45,7 @@ differentiable function.

```@example tutorial
A = LagrangeInterpolation(u, t)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Akima Interpolation
Expand All @@ -59,8 +56,7 @@ fit looks more natural.

```@example tutorial
A = AkimaInterpolation(u, t)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Constant Interpolation
Expand All @@ -71,16 +67,14 @@ passing the keyword argument `dir = :right`.

```@example tutorial
A = ConstantInterpolation(u, t)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

Or using the right endpoints:

```@example tutorial
A = ConstantInterpolation(u, t, dir = :right)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Quadratic Spline
Expand All @@ -92,8 +86,7 @@ nearest to it.

```@example tutorial
A = QuadraticSpline(u, t)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Cubic Spline
Expand All @@ -103,8 +96,7 @@ which hits each of the data points exactly.

```@example tutorial
A = CubicSpline(u, t)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## B-Splines
Expand All @@ -118,8 +110,7 @@ uniformly spaced, we will use the `:ArcLen` and `:Average` choices:

```@example tutorial
A = BSplineInterpolation(u, t, 3, :ArcLen, :Average)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

The approximating B-spline is a smoothed version of the B-spline. It again is
Expand All @@ -130,8 +121,7 @@ data. For example, if we use 4 control points, we get the result:

```@example tutorial
A = BSplineApprox(u, t, 3, 4, :ArcLen, :Average)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Cubic Hermite Spline
Expand All @@ -141,8 +131,7 @@ This is the cubic (third order) Hermite interpolation. It matches the values and
```@example tutorial
du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0011]
A = CubicHermiteSpline(du, u, t)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Quintic Hermite Spline
Expand All @@ -153,8 +142,7 @@ This is the quintic (fifth order) Hermite interpolation. It matches the values a
ddu = [0.0, -0.00033, 0.0051, -0.0067, 0.0029, 0.0]
du = [-0.047, -0.058, 0.054, 0.012, -0.068, 0.0011]
A = QuinticHermiteSpline(ddu, du, u, t)
scatter(t, u, label = "input data")
plot!(A)
plot(A)
```

## Regularization Smoothing
Expand Down Expand Up @@ -248,8 +236,7 @@ match our data. Let's start with the guess of every `p` being zero, that is
```@example tutorial
using Optim
A = Curvefit(u, t, m, ones(4), LBFGS())
scatter(t, u, label = "points", legend = :bottomright)
plot!(A)
plot(A)
```

We can check what the fitted parameters are via:
Expand All @@ -265,8 +252,7 @@ is not good:

```@example tutorial
A = Curvefit(u, t, m, zeros(4), LBFGS())
scatter(t, u, label = "points", legend = :bottomright)
plot!(A)
plot(A)
```

And the parameters show the issue:
Expand Down

0 comments on commit 62cd70f

Please sign in to comment.