Skip to content

Commit

Permalink
Merge pull request #342 from sathvikbhagavan/sb/output_dim
Browse files Browse the repository at this point in the history
refactor: add output dimensionality as a parameter in AbstractInterpolations
  • Loading branch information
ChrisRackauckas authored Oct 11, 2024
2 parents ed0a26b + a79f1fe commit 97f00b6
Show file tree
Hide file tree
Showing 8 changed files with 111 additions and 74 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/Downgrade.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ jobs:
group:
- Core
version:
- '1'
- '1.10'
os:
- ubuntu-latest
- macos-latest
Expand Down
2 changes: 2 additions & 0 deletions .github/workflows/Invalidations.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,5 @@ jobs:
evaluate-invalidations:
name: "Evaluate Invalidations"
uses: "SciML/.github/.github/workflows/invalidations.yml@v1"
with:
julia-version: "1.10"
17 changes: 10 additions & 7 deletions src/DataInterpolations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ module DataInterpolations

### Interface Functionality

abstract type AbstractInterpolation{T} end
abstract type AbstractInterpolation{T, N} end

using LinearAlgebra, RecipesBase
using PrettyTables
Expand Down Expand Up @@ -92,8 +92,8 @@ export LinearInterpolation, QuadraticInterpolation, LagrangeInterpolation,

# added for RegularizationSmooth, JJS 11/27/21
### Regularization data smoothing and interpolation
struct RegularizationSmooth{uType, tType, T, T2, ITP <: AbstractInterpolation{T}} <:
AbstractInterpolation{T}
struct RegularizationSmooth{uType, tType, T, T2, N, ITP <: AbstractInterpolation{T, N}} <:
AbstractInterpolation{T, N}
u::uType
::uType
t::tType
Expand All @@ -116,7 +116,8 @@ struct RegularizationSmooth{uType, tType, T, T2, ITP <: AbstractInterpolation{T}
alg,
Aitp,
extrapolate)
new{typeof(u), typeof(t), eltype(u), typeof(λ), typeof(Aitp)}(
N = get_output_dim(u)
new{typeof(u), typeof(t), eltype(u), typeof(λ), N, typeof(Aitp)}(
u,
û,
t,
Expand All @@ -143,8 +144,9 @@ struct CurvefitCache{
lbType,
algType,
pminType,
T
} <: AbstractInterpolation{T}
T,
N
} <: AbstractInterpolation{T, N}
u::uType
t::tType
m::mType # model type
Expand All @@ -155,9 +157,10 @@ struct CurvefitCache{
pmin::pminType # optimized params
extrapolate::Bool
function CurvefitCache(u, t, m, p0, ub, lb, alg, pmin, extrapolate)
N = get_output_dim(u)
new{typeof(u), typeof(t), typeof(m),
typeof(p0), typeof(ub), typeof(lb),
typeof(alg), typeof(pmin), eltype(u)}(u,
typeof(alg), typeof(pmin), eltype(u), N}(u,
t,
m,
p0,
Expand Down
12 changes: 6 additions & 6 deletions src/derivatives.jl
Original file line number Diff line number Diff line change
Expand Up @@ -151,14 +151,14 @@ function _derivative(A::BSplineInterpolation{<:AbstractVector{<:Number}}, t::Num
n = length(A.t)
scale = (A.p[idx + 1] - A.p[idx]) / (A.t[idx + 1] - A.t[idx])
t_ = A.p[idx] + (t - A.t[idx]) * scale
N = t isa ForwardDiff.Dual ? zeros(eltype(t), n) : A.N
spline_coefficients!(N, A.d - 1, A.k, t_)
sc = t isa ForwardDiff.Dual ? zeros(eltype(t), n) : A.sc
spline_coefficients!(sc, A.d - 1, A.k, t_)
ducum = zero(eltype(A.u))
if t == A.t[1]
ducum = (A.c[2] - A.c[1]) / (A.k[A.d + 2])
else
for i in 1:(n - 1)
ducum += N[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1])
ducum += sc[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1])
end
end
ducum * A.d * scale
Expand All @@ -172,14 +172,14 @@ function _derivative(A::BSplineApprox{<:AbstractVector{<:Number}}, t::Number, ig
idx = get_idx(A, t, iguess)
scale = (A.p[idx + 1] - A.p[idx]) / (A.t[idx + 1] - A.t[idx])
t_ = A.p[idx] + (t - A.t[idx]) * scale
N = t isa ForwardDiff.Dual ? zeros(eltype(t), A.h) : A.N
spline_coefficients!(N, A.d - 1, A.k, t_)
sc = t isa ForwardDiff.Dual ? zeros(eltype(t), A.h) : A.sc
spline_coefficients!(sc, A.d - 1, A.k, t_)
ducum = zero(eltype(A.u))
if t == A.t[1]
ducum = (A.c[2] - A.c[1]) / (A.k[A.d + 2])
else
for i in 1:(A.h - 1)
ducum += N[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1])
ducum += sc[i + 1] * (A.c[i + 1] - A.c[i]) / (A.k[i + A.d + 1] - A.k[i + 1])
end
end
ducum * A.d * scale
Expand Down
16 changes: 9 additions & 7 deletions src/integral_inverses.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
abstract type AbstractIntegralInverseInterpolation{T} <: AbstractInterpolation{T} end
abstract type AbstractIntegralInverseInterpolation{T, N} <: AbstractInterpolation{T, N} end

"""
invert_integral(A::AbstractInterpolation)::AbstractIntegralInverseInterpolation
Expand Down Expand Up @@ -33,15 +33,16 @@ Can be easily constructed with `invert_integral(A::LinearInterpolation{<:Abstrac
- `t` : Given by `A.I` (the cumulative integral of `A`)
- `A` : The `LinearInterpolation` object
"""
struct LinearInterpolationIntInv{uType, tType, itpType, T} <:
AbstractIntegralInverseInterpolation{T}
struct LinearInterpolationIntInv{uType, tType, itpType, T, N} <:
AbstractIntegralInverseInterpolation{T, N}
u::uType
t::tType
extrapolate::Bool
iguesser::Guesser{tType}
itp::itpType
function LinearInterpolationIntInv(u, t, A)
new{typeof(u), typeof(t), typeof(A), eltype(u)}(
N = get_output_dim(u)
new{typeof(u), typeof(t), typeof(A), eltype(u), N}(
u, t, A.extrapolate, Guesser(t), A)
end
end
Expand Down Expand Up @@ -79,15 +80,16 @@ Can be easily constructed with `invert_integral(A::ConstantInterpolation{<:Abstr
- `t` : Given by `A.I` (the cumulative integral of `A`)
- `A` : The `ConstantInterpolation` object
"""
struct ConstantInterpolationIntInv{uType, tType, itpType, T} <:
AbstractIntegralInverseInterpolation{T}
struct ConstantInterpolationIntInv{uType, tType, itpType, T, N} <:
AbstractIntegralInverseInterpolation{T, N}
u::uType
t::tType
extrapolate::Bool
iguesser::Guesser{tType}
itp::itpType
function ConstantInterpolationIntInv(u, t, A)
new{typeof(u), typeof(t), typeof(A), eltype(u)}(
N = get_output_dim(u)
new{typeof(u), typeof(t), typeof(A), eltype(u), N}(
u, t, A.extrapolate, Guesser(t), A
)
end
Expand Down
Loading

0 comments on commit 97f00b6

Please sign in to comment.