Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix Zygote AD with u a matrix or vector of arrays #324

Merged
merged 4 commits into from
Oct 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 12 additions & 2 deletions ext/DataInterpolationsChainRulesCoreExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,27 @@ if isdefined(Base, :get_extension)
LinearInterpolation, QuadraticInterpolation,
LagrangeInterpolation, AkimaInterpolation,
BSplineInterpolation, BSplineApprox, get_idx, get_parameters,
_quad_interp_indices
_quad_interp_indices, munge_data
using ChainRulesCore
else
using ..DataInterpolations: _interpolate, derivative, AbstractInterpolation,
LinearInterpolation, QuadraticInterpolation,
LagrangeInterpolation, AkimaInterpolation,
BSplineInterpolation, BSplineApprox, get_parameters,
_quad_interp_indices
_quad_interp_indices, munge_data
using ..ChainRulesCore
end

function ChainRulesCore.rrule(::typeof(munge_data), u, t)
u_out, t_out = munge_data(u, t)

# For now modifications by munge_data not supported
@assert (u == u_out && t == t_out)

munge_data_pullback = Δ -> (NoTangent(), Δ[1], Δ[2])
(u_out, t_out), munge_data_pullback
end

function ChainRulesCore.rrule(
::Type{LinearInterpolation}, u, t, I, p, extrapolate, cache_parameters)
A = LinearInterpolation(u, t, I, p, extrapolate, cache_parameters)
Expand Down
4 changes: 2 additions & 2 deletions src/derivatives.jl
Original file line number Diff line number Diff line change
Expand Up @@ -114,12 +114,12 @@ function _derivative(A::ConstantInterpolation, t::Number, iguess)
return zero(first(A.u))
end

function _derivative(A::ConstantInterpolation{<:AbstractVector}, t::Number)
function _derivative(A::ConstantInterpolation{<:AbstractVector}, t::Number, iguess)
((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError())
return isempty(searchsorted(A.t, t)) ? zero(A.u[1]) : eltype(A.u)(NaN)
end

function _derivative(A::ConstantInterpolation{<:AbstractMatrix}, t::Number)
function _derivative(A::ConstantInterpolation{<:AbstractMatrix}, t::Number, iguess)
((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError())
return isempty(searchsorted(A.t, t)) ? zero(A.u[:, 1]) : eltype(A.u)(NaN) .* A.u[:, 1]
end
Expand Down
6 changes: 4 additions & 2 deletions test/derivative_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -133,9 +133,11 @@ end

@testset "Constant Interpolation" begin
u = [0.0, 2.0, 1.0, 3.0, 2.0, 6.0, 5.5, 5.5, 2.7, 5.1, 3.0]
t = collect(0.0:10.0)
t = collect(0.0:11.0)
A = ConstantInterpolation(u, t)
@test all(derivative.(Ref(A), t) .== 0.0)
t2 = collect(0.0:10.0)
@test all(isnan, derivative.(Ref(A), t))
@test all(derivative.(Ref(A), t2 .+ 0.1) .== 0.0)
end

@testset "Quadratic Spline" begin
Expand Down
33 changes: 26 additions & 7 deletions test/zygote_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,13 @@ using Zygote

function test_zygote(method, u, t; args = [], args_after = [], kwargs = [], name::String)
func = method(args..., u, t, args_after...; kwargs..., extrapolate = true)
(; u, t) = func
trange = collect(range(minimum(t) - 5.0, maximum(t) + 5.0, step = 0.1))
trange_exclude = filter(x -> !in(x, t), trange)
@testset "$name, derivatives w.r.t. input" begin
for _t in trange_exclude
adiff = DataInterpolations.derivative(func, _t)
zdiff = only(Zygote.gradient(func, _t))
zdiff = u isa AbstractVector{<:Real} ? only(Zygote.gradient(func, _t)) :
only(Zygote.jacobian(func, _t))
isnothing(zdiff) && (zdiff = 0.0)
@test adiff ≈ zdiff
end
Expand All @@ -19,15 +19,26 @@ function test_zygote(method, u, t; args = [], args_after = [], kwargs = [], name
@testset "$name, derivatives w.r.t. u" begin
function f(u)
A = method(args..., u, t, args_after...; kwargs..., extrapolate = true)
out = zero(eltype(u))
out = if u isa AbstractVector{<:Real}
zero(eltype(u))
elseif u isa AbstractMatrix
zero(u[:, 1])
else
zero(u[1])
end

for _t in trange
out += A(_t)
end
out
end
zgrad = only(Zygote.gradient(f, u))
fgrad = ForwardDiff.gradient(f, u)
@test zgrad ≈ fgrad
zgrad, fgrad = if u isa AbstractVector{<:Real}
Zygote.gradient(f, u), ForwardDiff.gradient(f, u)
elseif u isa AbstractMatrix
Zygote.jacobian(f, u), ForwardDiff.jacobian(f, u)
else
Zygote.jacobian(f, u), ForwardDiff.jacobian(f, hcat(u...))
end
end
end
end
Expand All @@ -48,7 +59,15 @@ end
@testset "Constant Interpolation" begin
u = [0.0, 2.0, 1.0, 3.0, 2.0, 6.0, 5.5, 5.5, 2.7, 5.1, 3.0]
t = collect(0.0:10.0)
test_zygote(ConstantInterpolation, u, t; name = "Constant Interpolation")
test_zygote(ConstantInterpolation, u, t; name = "Constant Interpolation (vector)")

t = [1.0, 4.0]
u = [1.0 2.0; 0.0 1.0; 1.0 2.0; 0.0 1.0]
test_zygote(ConstantInterpolation, u, t, name = "Constant Interpolation (matrix)")

u = [[1.0, 2.0, 3.0, 4.0], [2.0, 3.0, 4.0, 5.0]]
test_zygote(
ConstantInterpolation, u, t, name = "Constant Interpolation (vector of vectors)")
end

@testset "Cubic Hermite Spline" begin
Expand Down
Loading