This repository has been archived by the owner on Sep 28, 2024. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
117 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -9,5 +9,6 @@ module NeuralOperators | |
using ChainRulesCore | ||
|
||
include("fourier.jl") | ||
include("wavelet.jl") | ||
include("model.jl") | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
struct SparseKernel1d{T,S} | ||
k::Int | ||
conv_blk::S | ||
out_weight::T | ||
end | ||
|
||
function SparseKernel1d(k::Int, c::Int=1; init=Flux.glorot_uniform) | ||
input_dim = c*k | ||
emb_dim = 128 | ||
conv = Conv((3,), input_dim=>emb_dim, relu; stride=1, pad=1, init=init) | ||
W_out = Dense(emb_dim, input_dim; init=init) | ||
return SparseKernel1d(k, conv, W_out) | ||
end | ||
|
||
function (l::SparseKernel1d)(X::AbstractArray) | ||
X_ = l.conv_blk(batched_transpose(X)) | ||
Y = l.out_weight(batched_transpose(X_)) | ||
return Y | ||
end | ||
|
||
|
||
# class MWT_CZ1d(nn.Module): | ||
# def __init__(self, | ||
# k = 3, alpha = 5, | ||
# L = 0, c = 1, | ||
# base = 'legendre', | ||
# initializer = None, | ||
# **kwargs): | ||
# super(MWT_CZ1d, self).__init__() | ||
|
||
# self.k = k | ||
# self.L = L | ||
# H0, H1, G0, G1, PHI0, PHI1 = get_filter(base, k) | ||
# H0r = H0@PHI0 | ||
# G0r = G0@PHI0 | ||
# H1r = H1@PHI1 | ||
# G1r = G1@PHI1 | ||
|
||
# H0r[np.abs(H0r)<1e-8]=0 | ||
# H1r[np.abs(H1r)<1e-8]=0 | ||
# G0r[np.abs(G0r)<1e-8]=0 | ||
# G1r[np.abs(G1r)<1e-8]=0 | ||
|
||
# self.A = sparseKernelFT1d(k, alpha, c) | ||
# self.B = sparseKernelFT1d(k, alpha, c) | ||
# self.C = sparseKernelFT1d(k, alpha, c) | ||
|
||
# self.T0 = nn.Linear(k, k) | ||
|
||
# self.register_buffer('ec_s', torch.Tensor( | ||
# np.concatenate((H0.T, H1.T), axis=0))) | ||
# self.register_buffer('ec_d', torch.Tensor( | ||
# np.concatenate((G0.T, G1.T), axis=0))) | ||
|
||
# self.register_buffer('rc_e', torch.Tensor( | ||
# np.concatenate((H0r, G0r), axis=0))) | ||
# self.register_buffer('rc_o', torch.Tensor( | ||
# np.concatenate((H1r, G1r), axis=0))) | ||
|
||
|
||
# def forward(self, x): | ||
|
||
# B, N, c, ich = x.shape # (B, N, k) | ||
# ns = math.floor(np.log2(N)) | ||
|
||
# Ud = torch.jit.annotate(List[Tensor], []) | ||
# Us = torch.jit.annotate(List[Tensor], []) | ||
# # decompose | ||
# for i in range(ns-self.L): | ||
# d, x = self.wavelet_transform(x) | ||
# Ud += [self.A(d) + self.B(x)] | ||
# Us += [self.C(d)] | ||
# x = self.T0(x) # coarsest scale transform | ||
|
||
# # reconstruct | ||
# for i in range(ns-1-self.L,-1,-1): | ||
# x = x + Us[i] | ||
# x = torch.cat((x, Ud[i]), -1) | ||
# x = self.evenOdd(x) | ||
# return x | ||
|
||
|
||
# def wavelet_transform(self, x): | ||
# xa = torch.cat([x[:, ::2, :, :], | ||
# x[:, 1::2, :, :], | ||
# ], -1) | ||
# d = torch.matmul(xa, self.ec_d) | ||
# s = torch.matmul(xa, self.ec_s) | ||
# return d, s | ||
|
||
|
||
# def evenOdd(self, x): | ||
|
||
# B, N, c, ich = x.shape # (B, N, c, k) | ||
# assert ich == 2*self.k | ||
# x_e = torch.matmul(x, self.rc_e) | ||
# x_o = torch.matmul(x, self.rc_o) | ||
|
||
# x = torch.zeros(B, N*2, c, self.k, | ||
# device = x.device) | ||
# x[..., ::2, :, :] = x_e | ||
# x[..., 1::2, :, :] = x_o | ||
# return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
using NeuralOperators | ||
|
||
T = Float32 | ||
k = 10 | ||
c = 1 | ||
in_chs = 20 | ||
batch_size = 32 | ||
|
||
|
||
l = NeuralOperators.SparseKernel1d(k, c) | ||
|
||
X = rand(T, c*k, in_chs, batch_size) | ||
Y = l(X) |