Skip to content

Commit

Permalink
Merge pull request #550 from j-fu/jf/PardisoAbstractSparse
Browse files Browse the repository at this point in the history
Fix Pardiso extension for the case of an AbstractSparseMatrixCSC
  • Loading branch information
ChrisRackauckas authored Oct 20, 2024
2 parents c20ca2d + c88b634 commit dbcb972
Show file tree
Hide file tree
Showing 3 changed files with 40 additions and 4 deletions.
5 changes: 2 additions & 3 deletions ext/LinearSolvePardisoExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -134,12 +134,11 @@ function SciMLBase.solve!(cache::LinearSolve.LinearCache, alg::PardisoJL; kwargs
if cache.isfresh
phase = alg.cache_analysis ? Pardiso.NUM_FACT : Pardiso.ANALYSIS_NUM_FACT
Pardiso.set_phase!(cache.cacheval, phase)
Pardiso.pardiso(cache.cacheval, A, eltype(A)[])
Pardiso.pardiso(cache.cacheval, SparseMatrixCSC(size(A)..., getcolptr(A), rowvals(A), nonzeros(A)), eltype(A)[])
cache.isfresh = false
end
Pardiso.set_phase!(cache.cacheval, Pardiso.SOLVE_ITERATIVE_REFINE)
Pardiso.pardiso(cache.cacheval, u, A, b)

Pardiso.pardiso(cache.cacheval, u, SparseMatrixCSC(size(A)..., getcolptr(A), rowvals(A), nonzeros(A)), b)
return SciMLBase.build_linear_solution(alg, cache.u, nothing, cache)
end

Expand Down
2 changes: 1 addition & 1 deletion src/extension_algs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -217,7 +217,7 @@ All values default to `nothing` and the solver internally determines the values
given the input types, and these keyword arguments are only for overriding the
default handling process. This should not be required by most users.
"""
struct PardisoJL{T1, T2} <: LinearSolve.SciMLLinearSolveAlgorithm
struct PardisoJL{T1, T2} <: AbstractSparseFactorization
nprocs::Union{Int, Nothing}
solver_type::T1
matrix_type::T2
Expand Down
37 changes: 37 additions & 0 deletions test/pardiso/pardiso.jl
Original file line number Diff line number Diff line change
Expand Up @@ -177,3 +177,40 @@ for solver in solvers
@test Pardiso.get_iparm(solver, i) == iparm[i][2]
end
end

@testset "AbstractSparseMatrixCSC" begin
struct MySparseMatrixCSC2{Tv, Ti} <: SparseArrays.AbstractSparseMatrixCSC{Tv, Ti}
csc::SparseMatrixCSC{Tv, Ti}
end

Base.size(m::MySparseMatrixCSC2) = size(m.csc)
SparseArrays.getcolptr(m::MySparseMatrixCSC2) = SparseArrays.getcolptr(m.csc)
SparseArrays.rowvals(m::MySparseMatrixCSC2) = SparseArrays.rowvals(m.csc)
SparseArrays.nonzeros(m::MySparseMatrixCSC2) = SparseArrays.nonzeros(m.csc)

for alg in algs
N = 100
u0 = ones(N)
A0 = spdiagm(1 => -ones(N - 1), 0 => fill(10.0, N), -1 => -ones(N - 1))
b0 = A0 * u0
B0 = MySparseMatrixCSC2(A0)
A1 = spdiagm(1 => -ones(N - 1), 0 => fill(100.0, N), -1 => -ones(N - 1))
b1=A1*u0
B1= MySparseMatrixCSC2(A1)


pr = LinearProblem(B0, b0)
# test default algorithn
u=solve(pr,alg)
@test norm(u - u0, Inf) < 1.0e-13

# test factorization with reinit!
pr = LinearProblem(B0, b0)
cache=init(pr,alg)
u=solve!(cache)
@test norm(u - u0, Inf) < 1.0e-13
reinit!(cache; A=B1, b=b1)
u=solve!(cache)
@test norm(u - u0, Inf) < 1.0e-13
end
end

0 comments on commit dbcb972

Please sign in to comment.