Skip to content

Commit

Permalink
Merge pull request #783 from sathvikbhagavan/sb/compats
Browse files Browse the repository at this point in the history
build: compat bumps to latest versions
  • Loading branch information
ChrisRackauckas authored Jan 22, 2024
2 parents ba5dbf9 + 8a0dccc commit 0cbdb7c
Show file tree
Hide file tree
Showing 18 changed files with 63 additions and 54 deletions.
6 changes: 3 additions & 3 deletions .buildkite/pipeline.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ steps:
- label: "GPU"
plugins:
- JuliaCI/julia#v1:
version: "1.9"
version: "1"
- JuliaCI/julia-test#v1:
coverage: false # 1000x slowdown
agents:
Expand All @@ -20,7 +20,7 @@ steps:
matrix:
setup:
version:
- "1.9"
- "1"
group:
- "NNODE"
- "NeuralAdapter"
Expand All @@ -44,7 +44,7 @@ steps:
- label: "Documentation"
plugins:
- JuliaCI/julia#v1:
version: "1.9"
version: "1"
command: |
julia --project=docs -e '
println("--- :julia: Instantiating project")
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ jobs:
- Logging
- Forward
version:
- "1.9"
- "1"
steps:
- uses: actions/checkout@v4
- uses: julia-actions/setup-julia@v1
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/Downstream.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ jobs:
strategy:
fail-fast: false
matrix:
julia-version: [1,1.6]
julia-version: [1]
os: [ubuntu-latest]
package:
- {user: SciML, repo: PDESystemLibrary.jl, group: NeuralPDE}
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/Invalidations.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ jobs:
steps:
- uses: julia-actions/setup-julia@v1
with:
version: "1.9"
version: "1"
- uses: actions/checkout@v4
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-invalidations@v1
Expand Down
18 changes: 10 additions & 8 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ AdvancedHMC = "0bf59076-c3b1-5ca4-86bd-e02cd72cde3d"
ArrayInterface = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
Cubature = "667455a9-e2ce-5579-9412-b964f529a492"
DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e"
DiffEqNoiseProcess = "77a26b50-5914-5dd7-bc55-306e6241c503"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Expand All @@ -18,7 +19,6 @@ Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
Integrals = "de52edbc-65ea-441a-8357-d3a637375a31"
IntegralsCubature = "c31f79ba-6e32-46d4-a52f-182a8ac42a54"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LogDensityProblems = "6fdf6af0-433a-55f7-b3ed-c6c6e0b8df7c"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
Expand All @@ -30,7 +30,6 @@ Optimisers = "3bd65402-5787-11e9-1adc-39752487f4e2"
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
QuasiMonteCarlo = "8a4e6c94-4038-4cdc-81c3-7e6ffdb2a71b"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
RuntimeGeneratedFunctions = "7e49a35a-f44a-4d26-94aa-eba1b4ca6b47"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
Expand All @@ -48,16 +47,17 @@ ArrayInterface = "6, 7"
CUDA = "4"
ChainRulesCore = "1"
ComponentArrays = "0.13.2, 0.14, 0.15"
Cubature = "1.5"
DiffEqBase = "6"
DiffEqNoiseProcess = "5.1"
Distributions = "0.23, 0.24, 0.25"
DocStringExtensions = "0.8, 0.9"
DomainSets = "0.6"
DomainSets = "0.6, 0.7"
Flux = "0.13, 0.14"
ForwardDiff = "0.10"
Functors = "0.4"
Integrals = "3.1"
IntegralsCubature = "=0.2.2"
Integrals = "4"
LineSearches = "7.2"
LogDensityProblems = "2"
Lux = "0.4, 0.5"
MCMCChains = "6"
Expand All @@ -67,10 +67,9 @@ Optim = ">= 1.7.8"
Optimisers = "0.2, 0.3"
Optimization = "3"
QuasiMonteCarlo = "0.3.2"
RecursiveArrayTools = "2.31"
Reexport = "1.0"
RuntimeGeneratedFunctions = "0.5"
SciMLBase = "1.91, 2"
SciMLBase = "2"
Statistics = "1"
StochasticDiffEq = "6.13"
SymbolicUtils = "1"
Expand All @@ -81,12 +80,15 @@ julia = "1.6"

[extras]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255"
LuxCUDA = "d0bbae9a-e099-4d5b-a835-1c6931763bda"
OptimizationOptimJL = "36348300-93cb-4f02-beb5-3c3902f8871e"
OptimizationOptimisers = "42dfb2eb-d2b4-4451-abcd-913932933ac1"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd"

[targets]
test = ["Test", "CUDA", "SafeTestsets", "OptimizationOptimisers", "OptimizationOptimJL", "Pkg", "OrdinaryDiffEq"]
test = ["Test", "CUDA", "SafeTestsets", "OptimizationOptimisers", "OptimizationOptimJL", "Pkg", "OrdinaryDiffEq", "LineSearches", "cuDNN", "LuxCUDA"]
11 changes: 6 additions & 5 deletions docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
[deps]
AdvancedHMC = "0bf59076-c3b1-5ca4-86bd-e02cd72cde3d"
Cubature = "667455a9-e2ce-5579-9412-b964f529a492"
DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
DomainSets = "5b8099bc-c8ec-5219-889f-1d9e522a28bf"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
Integrals = "de52edbc-65ea-441a-8357-d3a637375a31"
IntegralsCubature = "c31f79ba-6e32-46d4-a52f-182a8ac42a54"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
Expand All @@ -24,12 +24,13 @@ SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"

[compat]
AdvancedHMC = "0.5"
Cubature = "1.5"
DiffEqBase = "6.106"
Distributions = "0.23, 0.24, 0.25"
Documenter = "1"
DomainSets = "0.6"
DomainSets = "0.6, 0.7"
Flux = "0.13, 0.14"
Integrals = "3.3"
IntegralsCubature = "=0.2.2"
Integrals = "4"
Lux = "0.4, 0.5"
ModelingToolkit = "8.33"
MonteCarloMeasurements = "1"
Expand All @@ -40,6 +41,6 @@ OptimizationOptimisers = "0.1"
OptimizationPolyalgorithms = "0.1"
OrdinaryDiffEq = "6.31"
Plots = "1.36"
QuasiMonteCarlo = "0.2"
QuasiMonteCarlo = "0.3"
Roots = "2.0"
SpecialFunctions = "2.1"
1 change: 1 addition & 0 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ using Documenter, NeuralPDE
cp("./docs/Manifest.toml", "./docs/src/assets/Manifest.toml", force = true)
cp("./docs/Project.toml", "./docs/src/assets/Project.toml", force = true)

ENV["JULIA_DEBUG"] = "Documenter"
ENV["GKSwstype"] = "100"
using Plots

Expand Down
5 changes: 4 additions & 1 deletion docs/src/manual/bpinns.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,11 @@ NeuralPDE.ahmc_bayesian_pinn_pde

## `symbolic_discretize` for `BayesianPINN` and lower level interface.

```@docs
```@docs; canonical=false
SciMLBase.symbolic_discretize(::PDESystem, ::NeuralPDE.AbstractPINN)
```

```@docs
NeuralPDE.BPINNstats
NeuralPDE.BPINNsolution
```
Expand Down
2 changes: 1 addition & 1 deletion docs/src/tutorials/constraints.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ with Physics-Informed Neural Networks.

```@example fokkerplank
using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL
using Integrals, IntegralsCubature
using Integrals, Cubature
import ModelingToolkit: Interval, infimum, supremum
# the example is taken from this article https://arxiv.org/abs/1910.10503
@parameters x
Expand Down
1 change: 0 additions & 1 deletion src/BPINN_ode.jl
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,6 @@ BPINN Solution contains the original solution from AdvancedHMC.jl sampling(BPINN
> estimated_nn_params - Probabilistic Estimate of NN params from sampled weights,biases
> estimated_de_params - Probabilistic Estimate of DE params from sampled unknown DE paramters
"""

struct BPINNsolution{O <: BPINNstats, E, NP, OP, P}
original::O
ensemblesol::E
Expand Down
3 changes: 1 addition & 2 deletions src/NeuralPDE.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ using Reexport, Statistics
using Zygote, ForwardDiff, Random, Distributions
using Adapt, DiffEqNoiseProcess, StochasticDiffEq
using Optimization
using Integrals, IntegralsCubature
using Integrals, Cubature
using QuasiMonteCarlo
using RuntimeGeneratedFunctions
using SciMLBase
Expand All @@ -31,7 +31,6 @@ import ModelingToolkit: Interval, infimum, supremum #,Ball
import SciMLBase: @add_kwonly, parameterless_type
import Optimisers
import UnPack: @unpack
import RecursiveArrayTools
import ChainRulesCore, Flux, Lux, ComponentArrays
import ChainRulesCore: @non_differentiable

Expand Down
4 changes: 3 additions & 1 deletion src/ode_solve.jl
Original file line number Diff line number Diff line change
Expand Up @@ -272,8 +272,8 @@ end

function generate_loss(strategy::GridTraining, phi, f, autodiff::Bool, tspan, p, batch)
ts = tspan[1]:(strategy.dx):tspan[2]

# sum(abs2,inner_loss(t,θ) for t in ts) but Zygote generators are broken
autodiff && throw(ArgumentError("autodiff not supported for GridTraining."))
function loss(θ, _)
if batch
sum(abs2, inner_loss(phi, f, autodiff, ts, θ, p))
Expand All @@ -287,6 +287,7 @@ end
function generate_loss(strategy::StochasticTraining, phi, f, autodiff::Bool, tspan, p,
batch)
# sum(abs2,inner_loss(t,θ) for t in ts) but Zygote generators are broken
autodiff && throw(ArgumentError("autodiff not supported for StochasticTraining."))
function loss(θ, _)
ts = adapt(parameterless_type(θ),
[(tspan[2] - tspan[1]) * rand() + tspan[1] for i in 1:(strategy.points)])
Expand All @@ -302,6 +303,7 @@ end

function generate_loss(strategy::WeightedIntervalTraining, phi, f, autodiff::Bool, tspan, p,
batch)
autodiff && throw(ArgumentError("autodiff not supported for WeightedIntervalTraining."))
minT = tspan[1]
maxT = tspan[2]

Expand Down
5 changes: 3 additions & 2 deletions src/training_strategies.jl
Original file line number Diff line number Diff line change
Expand Up @@ -320,9 +320,10 @@ function get_loss_function(loss_function, lb, ub, eltypeθ, strategy::Quadrature
# mean(abs2,loss_(x,θ), dims=2)
# size_x = fill(size(x)[2],(1,1))
x = adapt(parameterless_type(ComponentArrays.getdata(θ)), x)
sum(abs2, loss_(x, θ), dims = 2) #./ size_x
sum(abs2, view(loss_(x, θ), 1, :), dims = 2) #./ size_x
end
prob = IntegralProblem(integrand, lb, ub, θ, batch = strategy.batch, nout = 1)
integral_function = BatchIntegralFunction(integrand, max_batch = strategy.batch)
prob = IntegralProblem(integral_function, lb, ub, θ)
solve(prob,
strategy.quadrature_alg,
reltol = strategy.reltol,
Expand Down
28 changes: 14 additions & 14 deletions test/NNODE_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,14 +10,14 @@ linear = (u, p, t) -> cos(2pi * t)
tspan = (0.0f0, 1.0f0)
u0 = 0.0f0
prob = ODEProblem(linear, u0, tspan)
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1)) |> Flux.f64
luxchain = Lux.Chain(Lux.Dense(1, 5, Lux.σ), Lux.Dense(5, 1))
opt = OptimizationOptimisers.Adam(0.1, (0.9, 0.95))

sol = solve(prob, NeuralPDE.NNODE(chain, opt), dt = 1 / 20.0f0, verbose = true,
abstol = 1.0f-10, maxiters = 200)

@test_throws Any solve(prob, NeuralPDE.NNODE(chain, opt; autodiff = true), dt = 1 / 20.0f0,
@test_throws ArgumentError solve(prob, NeuralPDE.NNODE(chain, opt; autodiff = true), dt = 1 / 20.0f0,
verbose = true, abstol = 1.0f-10, maxiters = 200)

sol = solve(prob, NeuralPDE.NNODE(chain, opt), verbose = true,
Expand All @@ -26,7 +26,7 @@ sol = solve(prob, NeuralPDE.NNODE(chain, opt), verbose = true,
sol = solve(prob, NeuralPDE.NNODE(luxchain, opt), dt = 1 / 20.0f0, verbose = true,
abstol = 1.0f-10, maxiters = 200)

@test_throws Any solve(prob, NeuralPDE.NNODE(luxchain, opt; autodiff = true),
@test_throws ArgumentError solve(prob, NeuralPDE.NNODE(luxchain, opt; autodiff = true),
dt = 1 / 20.0f0,
verbose = true, abstol = 1.0f-10, maxiters = 200)

Expand All @@ -51,14 +51,14 @@ linear = (u, p, t) -> [cos(2pi * t)]
tspan = (0.0f0, 1.0f0)
u0 = [0.0f0]
prob = ODEProblem(linear, u0, tspan)
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1)) |> Flux.f64
luxchain = Lux.Chain(Lux.Dense(1, 5, σ), Lux.Dense(5, 1))

opt = OptimizationOptimJL.BFGS()
sol = solve(prob, NeuralPDE.NNODE(chain, opt), dt = 1 / 20.0f0, abstol = 1e-10,
verbose = true, maxiters = 200)

@test_throws Any solve(prob, NeuralPDE.NNODE(chain, opt; autodiff = true), dt = 1 / 20.0f0,
@test_throws ArgumentError solve(prob, NeuralPDE.NNODE(chain, opt; autodiff = true), dt = 1 / 20.0f0,
abstol = 1e-10, verbose = true, maxiters = 200)

sol = solve(prob, NeuralPDE.NNODE(chain, opt), abstol = 1.0f-6,
Expand All @@ -67,7 +67,7 @@ sol = solve(prob, NeuralPDE.NNODE(chain, opt), abstol = 1.0f-6,
sol = solve(prob, NeuralPDE.NNODE(luxchain, opt), dt = 1 / 20.0f0, abstol = 1e-10,
verbose = true, maxiters = 200)

@test_throws Any solve(prob, NeuralPDE.NNODE(luxchain, opt; autodiff = true),
@test_throws ArgumentError solve(prob, NeuralPDE.NNODE(luxchain, opt; autodiff = true),
dt = 1 / 20.0f0,
abstol = 1e-10, verbose = true, maxiters = 200)

Expand All @@ -83,20 +83,20 @@ linear = (u, p, t) -> @. t^3 + 2 * t + (t^2) * ((1 + 3 * (t^2)) / (1 + t + (t^3)
u * (t + ((1 + 3 * (t^2)) / (1 + t + t^3)))
linear_analytic = (u0, p, t) -> [exp(-(t^2) / 2) / (1 + t + t^3) + t^2]
prob = ODEProblem(ODEFunction(linear, analytic = linear_analytic), [1.0f0], (0.0f0, 1.0f0))
chain = Flux.Chain(Dense(1, 128, σ), Dense(128, 1))
chain = Flux.Chain(Dense(1, 128, σ), Dense(128, 1)) |> Flux.f64
luxchain = Lux.Chain(Lux.Dense(1, 128, σ), Lux.Dense(128, 1))
opt = OptimizationOptimisers.Adam(0.01)

sol = solve(prob, NeuralPDE.NNODE(chain, opt), verbose = true, maxiters = 400)
@test sol.errors[:l2] < 0.5

@test_throws Any solve(prob, NeuralPDE.NNODE(chain, opt; batch = true), verbose = true,
@test_throws AssertionError solve(prob, NeuralPDE.NNODE(chain, opt; batch = true), verbose = true,
maxiters = 400)

sol = solve(prob, NeuralPDE.NNODE(luxchain, opt), verbose = true, maxiters = 400)
@test sol.errors[:l2] < 0.5

@test_throws Any solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
@test_throws AssertionError solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
maxiters = 400)

sol = solve(prob,
Expand Down Expand Up @@ -142,23 +142,23 @@ sol = solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
linear = (u, p, t) -> -u / 5 + exp(-t / 5) .* cos(t)
linear_analytic = (u0, p, t) -> exp(-t / 5) * (u0 + sin(t))
prob = ODEProblem(ODEFunction(linear, analytic = linear_analytic), 0.0f0, (0.0f0, 1.0f0))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1)) |> Flux.f64
luxchain = Lux.Chain(Lux.Dense(1, 5, σ), Lux.Dense(5, 1))

opt = OptimizationOptimisers.Adam(0.1)
sol = solve(prob, NeuralPDE.NNODE(chain, opt), verbose = true, maxiters = 400,
abstol = 1.0f-8)
@test sol.errors[:l2] < 0.5

@test_throws Any solve(prob, NeuralPDE.NNODE(chain, opt; batch = true), verbose = true,
@test_throws AssertionError solve(prob, NeuralPDE.NNODE(chain, opt; batch = true), verbose = true,
maxiters = 400,
abstol = 1.0f-8)

sol = solve(prob, NeuralPDE.NNODE(luxchain, opt), verbose = true, maxiters = 400,
abstol = 1.0f-8)
@test sol.errors[:l2] < 0.5

@test_throws Any solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
@test_throws AssertionError solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
maxiters = 400,
abstol = 1.0f-8)

Expand Down Expand Up @@ -214,7 +214,7 @@ u0 = [0.0f0, -1.0f0 / 2pi]
linear_analytic = (u0, p, t) -> [sin(2pi * t) / 2pi, -cos(2pi * t) / 2pi]
odefunction = ODEFunction(linear, analytic = linear_analytic)
prob = ODEProblem(odefunction, u0, tspan)
chain = Flux.Chain(Dense(1, 10, σ), Dense(10, 2))
chain = Flux.Chain(Dense(1, 10, σ), Dense(10, 2)) |> Flux.f64
opt = OptimizationOptimisers.Adam(0.1)
alg = NeuralPDE.NNODE(chain, opt; autodiff = false)

Expand Down Expand Up @@ -313,7 +313,7 @@ sol1 = solve(prob, alg1, verbose = true, abstol = 1.0f-10, maxiters = 200)
@test sol1.errors[:l2] < 0.5

# StochasticTraining(Flux Chain)
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1)) |> Flux.f64

(u_, t_) = (u_analytical(ts), ts)
function additional_loss(phi, θ)
Expand Down
Loading

0 comments on commit 0cbdb7c

Please sign in to comment.