Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

build: compat bumps to latest versions #783

Merged
merged 14 commits into from
Jan 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions .buildkite/pipeline.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ steps:
- label: "GPU"
plugins:
- JuliaCI/julia#v1:
version: "1.9"
version: "1"
- JuliaCI/julia-test#v1:
coverage: false # 1000x slowdown
agents:
Expand All @@ -20,7 +20,7 @@ steps:
matrix:
setup:
version:
- "1.9"
- "1"
group:
- "NNODE"
- "NeuralAdapter"
Expand All @@ -44,7 +44,7 @@ steps:
- label: "Documentation"
plugins:
- JuliaCI/julia#v1:
version: "1.9"
version: "1"
command: |
julia --project=docs -e '
println("--- :julia: Instantiating project")
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ jobs:
- Logging
- Forward
version:
- "1.9"
- "1"
steps:
- uses: actions/checkout@v4
- uses: julia-actions/setup-julia@v1
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/Downstream.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ jobs:
strategy:
fail-fast: false
matrix:
julia-version: [1,1.6]
julia-version: [1]
os: [ubuntu-latest]
package:
- {user: SciML, repo: PDESystemLibrary.jl, group: NeuralPDE}
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/Invalidations.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ jobs:
steps:
- uses: julia-actions/setup-julia@v1
with:
version: "1.9"
version: "1"
- uses: actions/checkout@v4
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-invalidations@v1
Expand Down
18 changes: 10 additions & 8 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ AdvancedHMC = "0bf59076-c3b1-5ca4-86bd-e02cd72cde3d"
ArrayInterface = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
Cubature = "667455a9-e2ce-5579-9412-b964f529a492"
DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e"
DiffEqNoiseProcess = "77a26b50-5914-5dd7-bc55-306e6241c503"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Expand All @@ -18,7 +19,6 @@ Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
Integrals = "de52edbc-65ea-441a-8357-d3a637375a31"
IntegralsCubature = "c31f79ba-6e32-46d4-a52f-182a8ac42a54"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LogDensityProblems = "6fdf6af0-433a-55f7-b3ed-c6c6e0b8df7c"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
Expand All @@ -30,7 +30,6 @@ Optimisers = "3bd65402-5787-11e9-1adc-39752487f4e2"
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
QuasiMonteCarlo = "8a4e6c94-4038-4cdc-81c3-7e6ffdb2a71b"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
RuntimeGeneratedFunctions = "7e49a35a-f44a-4d26-94aa-eba1b4ca6b47"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
Expand All @@ -48,16 +47,17 @@ ArrayInterface = "6, 7"
CUDA = "4"
ChainRulesCore = "1"
ComponentArrays = "0.13.2, 0.14, 0.15"
Cubature = "1.5"
DiffEqBase = "6"
DiffEqNoiseProcess = "5.1"
Distributions = "0.23, 0.24, 0.25"
DocStringExtensions = "0.8, 0.9"
DomainSets = "0.6"
DomainSets = "0.6, 0.7"
Flux = "0.13, 0.14"
ForwardDiff = "0.10"
Functors = "0.4"
Integrals = "3.1"
IntegralsCubature = "=0.2.2"
Integrals = "4"
LineSearches = "7.2"
LogDensityProblems = "2"
Lux = "0.4, 0.5"
MCMCChains = "6"
Expand All @@ -67,10 +67,9 @@ Optim = ">= 1.7.8"
Optimisers = "0.2, 0.3"
Optimization = "3"
QuasiMonteCarlo = "0.3.2"
RecursiveArrayTools = "2.31"
Reexport = "1.0"
RuntimeGeneratedFunctions = "0.5"
SciMLBase = "1.91, 2"
SciMLBase = "2"
Statistics = "1"
StochasticDiffEq = "6.13"
SymbolicUtils = "1"
Expand All @@ -81,12 +80,15 @@ julia = "1.6"

[extras]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255"
LuxCUDA = "d0bbae9a-e099-4d5b-a835-1c6931763bda"
OptimizationOptimJL = "36348300-93cb-4f02-beb5-3c3902f8871e"
OptimizationOptimisers = "42dfb2eb-d2b4-4451-abcd-913932933ac1"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd"

[targets]
test = ["Test", "CUDA", "SafeTestsets", "OptimizationOptimisers", "OptimizationOptimJL", "Pkg", "OrdinaryDiffEq"]
test = ["Test", "CUDA", "SafeTestsets", "OptimizationOptimisers", "OptimizationOptimJL", "Pkg", "OrdinaryDiffEq", "LineSearches", "cuDNN", "LuxCUDA"]
11 changes: 6 additions & 5 deletions docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
[deps]
AdvancedHMC = "0bf59076-c3b1-5ca4-86bd-e02cd72cde3d"
Cubature = "667455a9-e2ce-5579-9412-b964f529a492"
DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
DomainSets = "5b8099bc-c8ec-5219-889f-1d9e522a28bf"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
Integrals = "de52edbc-65ea-441a-8357-d3a637375a31"
IntegralsCubature = "c31f79ba-6e32-46d4-a52f-182a8ac42a54"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
Expand All @@ -24,12 +24,13 @@ SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"

[compat]
AdvancedHMC = "0.5"
Cubature = "1.5"
DiffEqBase = "6.106"
Distributions = "0.23, 0.24, 0.25"
Documenter = "1"
DomainSets = "0.6"
DomainSets = "0.6, 0.7"
Flux = "0.13, 0.14"
Integrals = "3.3"
IntegralsCubature = "=0.2.2"
Integrals = "4"
Lux = "0.4, 0.5"
ModelingToolkit = "8.33"
MonteCarloMeasurements = "1"
Expand All @@ -40,6 +41,6 @@ OptimizationOptimisers = "0.1"
OptimizationPolyalgorithms = "0.1"
OrdinaryDiffEq = "6.31"
Plots = "1.36"
QuasiMonteCarlo = "0.2"
QuasiMonteCarlo = "0.3"
Roots = "2.0"
SpecialFunctions = "2.1"
1 change: 1 addition & 0 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ using Documenter, NeuralPDE
cp("./docs/Manifest.toml", "./docs/src/assets/Manifest.toml", force = true)
cp("./docs/Project.toml", "./docs/src/assets/Project.toml", force = true)

ENV["JULIA_DEBUG"] = "Documenter"
ENV["GKSwstype"] = "100"
using Plots

Expand Down
5 changes: 4 additions & 1 deletion docs/src/manual/bpinns.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,11 @@ NeuralPDE.ahmc_bayesian_pinn_pde

## `symbolic_discretize` for `BayesianPINN` and lower level interface.

```@docs
```@docs; canonical=false
SciMLBase.symbolic_discretize(::PDESystem, ::NeuralPDE.AbstractPINN)
```

```@docs
NeuralPDE.BPINNstats
NeuralPDE.BPINNsolution
```
Expand Down
2 changes: 1 addition & 1 deletion docs/src/tutorials/constraints.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ with Physics-Informed Neural Networks.

```@example fokkerplank
using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL
using Integrals, IntegralsCubature
using Integrals, Cubature
import ModelingToolkit: Interval, infimum, supremum
# the example is taken from this article https://arxiv.org/abs/1910.10503
@parameters x
Expand Down
1 change: 0 additions & 1 deletion src/BPINN_ode.jl
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,6 @@ BPINN Solution contains the original solution from AdvancedHMC.jl sampling(BPINN
> estimated_nn_params - Probabilistic Estimate of NN params from sampled weights,biases
> estimated_de_params - Probabilistic Estimate of DE params from sampled unknown DE paramters
"""

struct BPINNsolution{O <: BPINNstats, E, NP, OP, P}
original::O
ensemblesol::E
Expand Down
3 changes: 1 addition & 2 deletions src/NeuralPDE.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ using Reexport, Statistics
using Zygote, ForwardDiff, Random, Distributions
using Adapt, DiffEqNoiseProcess, StochasticDiffEq
using Optimization
using Integrals, IntegralsCubature
using Integrals, Cubature
using QuasiMonteCarlo
using RuntimeGeneratedFunctions
using SciMLBase
Expand All @@ -31,7 +31,6 @@ import ModelingToolkit: Interval, infimum, supremum #,Ball
import SciMLBase: @add_kwonly, parameterless_type
import Optimisers
import UnPack: @unpack
import RecursiveArrayTools
import ChainRulesCore, Flux, Lux, ComponentArrays
import ChainRulesCore: @non_differentiable

Expand Down
4 changes: 3 additions & 1 deletion src/ode_solve.jl
Original file line number Diff line number Diff line change
Expand Up @@ -272,8 +272,8 @@ end

function generate_loss(strategy::GridTraining, phi, f, autodiff::Bool, tspan, p, batch)
ts = tspan[1]:(strategy.dx):tspan[2]

# sum(abs2,inner_loss(t,θ) for t in ts) but Zygote generators are broken
autodiff && throw(ArgumentError("autodiff not supported for GridTraining."))
function loss(θ, _)
if batch
sum(abs2, inner_loss(phi, f, autodiff, ts, θ, p))
Expand All @@ -287,6 +287,7 @@ end
function generate_loss(strategy::StochasticTraining, phi, f, autodiff::Bool, tspan, p,
batch)
# sum(abs2,inner_loss(t,θ) for t in ts) but Zygote generators are broken
autodiff && throw(ArgumentError("autodiff not supported for StochasticTraining."))
function loss(θ, _)
ts = adapt(parameterless_type(θ),
[(tspan[2] - tspan[1]) * rand() + tspan[1] for i in 1:(strategy.points)])
Expand All @@ -302,6 +303,7 @@ end

function generate_loss(strategy::WeightedIntervalTraining, phi, f, autodiff::Bool, tspan, p,
batch)
autodiff && throw(ArgumentError("autodiff not supported for WeightedIntervalTraining."))
minT = tspan[1]
maxT = tspan[2]

Expand Down
5 changes: 3 additions & 2 deletions src/training_strategies.jl
Original file line number Diff line number Diff line change
Expand Up @@ -320,9 +320,10 @@ function get_loss_function(loss_function, lb, ub, eltypeθ, strategy::Quadrature
# mean(abs2,loss_(x,θ), dims=2)
# size_x = fill(size(x)[2],(1,1))
x = adapt(parameterless_type(ComponentArrays.getdata(θ)), x)
sum(abs2, loss_(x, θ), dims = 2) #./ size_x
sum(abs2, view(loss_(x, θ), 1, :), dims = 2) #./ size_x
end
prob = IntegralProblem(integrand, lb, ub, θ, batch = strategy.batch, nout = 1)
integral_function = BatchIntegralFunction(integrand, max_batch = strategy.batch)
prob = IntegralProblem(integral_function, lb, ub, θ)
solve(prob,
strategy.quadrature_alg,
reltol = strategy.reltol,
Expand Down
28 changes: 14 additions & 14 deletions test/NNODE_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,14 +10,14 @@ linear = (u, p, t) -> cos(2pi * t)
tspan = (0.0f0, 1.0f0)
u0 = 0.0f0
prob = ODEProblem(linear, u0, tspan)
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1)) |> Flux.f64
luxchain = Lux.Chain(Lux.Dense(1, 5, Lux.σ), Lux.Dense(5, 1))
opt = OptimizationOptimisers.Adam(0.1, (0.9, 0.95))

sol = solve(prob, NeuralPDE.NNODE(chain, opt), dt = 1 / 20.0f0, verbose = true,
abstol = 1.0f-10, maxiters = 200)

@test_throws Any solve(prob, NeuralPDE.NNODE(chain, opt; autodiff = true), dt = 1 / 20.0f0,
@test_throws ArgumentError solve(prob, NeuralPDE.NNODE(chain, opt; autodiff = true), dt = 1 / 20.0f0,
verbose = true, abstol = 1.0f-10, maxiters = 200)

sol = solve(prob, NeuralPDE.NNODE(chain, opt), verbose = true,
Expand All @@ -26,7 +26,7 @@ sol = solve(prob, NeuralPDE.NNODE(chain, opt), verbose = true,
sol = solve(prob, NeuralPDE.NNODE(luxchain, opt), dt = 1 / 20.0f0, verbose = true,
abstol = 1.0f-10, maxiters = 200)

@test_throws Any solve(prob, NeuralPDE.NNODE(luxchain, opt; autodiff = true),
@test_throws ArgumentError solve(prob, NeuralPDE.NNODE(luxchain, opt; autodiff = true),
dt = 1 / 20.0f0,
verbose = true, abstol = 1.0f-10, maxiters = 200)

Expand All @@ -51,14 +51,14 @@ linear = (u, p, t) -> [cos(2pi * t)]
tspan = (0.0f0, 1.0f0)
u0 = [0.0f0]
prob = ODEProblem(linear, u0, tspan)
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1)) |> Flux.f64
luxchain = Lux.Chain(Lux.Dense(1, 5, σ), Lux.Dense(5, 1))

opt = OptimizationOptimJL.BFGS()
sol = solve(prob, NeuralPDE.NNODE(chain, opt), dt = 1 / 20.0f0, abstol = 1e-10,
verbose = true, maxiters = 200)

@test_throws Any solve(prob, NeuralPDE.NNODE(chain, opt; autodiff = true), dt = 1 / 20.0f0,
@test_throws ArgumentError solve(prob, NeuralPDE.NNODE(chain, opt; autodiff = true), dt = 1 / 20.0f0,
abstol = 1e-10, verbose = true, maxiters = 200)

sol = solve(prob, NeuralPDE.NNODE(chain, opt), abstol = 1.0f-6,
Expand All @@ -67,7 +67,7 @@ sol = solve(prob, NeuralPDE.NNODE(chain, opt), abstol = 1.0f-6,
sol = solve(prob, NeuralPDE.NNODE(luxchain, opt), dt = 1 / 20.0f0, abstol = 1e-10,
verbose = true, maxiters = 200)

@test_throws Any solve(prob, NeuralPDE.NNODE(luxchain, opt; autodiff = true),
@test_throws ArgumentError solve(prob, NeuralPDE.NNODE(luxchain, opt; autodiff = true),
dt = 1 / 20.0f0,
abstol = 1e-10, verbose = true, maxiters = 200)

Expand All @@ -83,20 +83,20 @@ linear = (u, p, t) -> @. t^3 + 2 * t + (t^2) * ((1 + 3 * (t^2)) / (1 + t + (t^3)
u * (t + ((1 + 3 * (t^2)) / (1 + t + t^3)))
linear_analytic = (u0, p, t) -> [exp(-(t^2) / 2) / (1 + t + t^3) + t^2]
prob = ODEProblem(ODEFunction(linear, analytic = linear_analytic), [1.0f0], (0.0f0, 1.0f0))
chain = Flux.Chain(Dense(1, 128, σ), Dense(128, 1))
chain = Flux.Chain(Dense(1, 128, σ), Dense(128, 1)) |> Flux.f64
luxchain = Lux.Chain(Lux.Dense(1, 128, σ), Lux.Dense(128, 1))
opt = OptimizationOptimisers.Adam(0.01)

sol = solve(prob, NeuralPDE.NNODE(chain, opt), verbose = true, maxiters = 400)
@test sol.errors[:l2] < 0.5

@test_throws Any solve(prob, NeuralPDE.NNODE(chain, opt; batch = true), verbose = true,
@test_throws AssertionError solve(prob, NeuralPDE.NNODE(chain, opt; batch = true), verbose = true,
maxiters = 400)

sol = solve(prob, NeuralPDE.NNODE(luxchain, opt), verbose = true, maxiters = 400)
@test sol.errors[:l2] < 0.5

@test_throws Any solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
@test_throws AssertionError solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
maxiters = 400)

sol = solve(prob,
Expand Down Expand Up @@ -142,23 +142,23 @@ sol = solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
linear = (u, p, t) -> -u / 5 + exp(-t / 5) .* cos(t)
linear_analytic = (u0, p, t) -> exp(-t / 5) * (u0 + sin(t))
prob = ODEProblem(ODEFunction(linear, analytic = linear_analytic), 0.0f0, (0.0f0, 1.0f0))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1)) |> Flux.f64
luxchain = Lux.Chain(Lux.Dense(1, 5, σ), Lux.Dense(5, 1))

opt = OptimizationOptimisers.Adam(0.1)
sol = solve(prob, NeuralPDE.NNODE(chain, opt), verbose = true, maxiters = 400,
abstol = 1.0f-8)
@test sol.errors[:l2] < 0.5

@test_throws Any solve(prob, NeuralPDE.NNODE(chain, opt; batch = true), verbose = true,
@test_throws AssertionError solve(prob, NeuralPDE.NNODE(chain, opt; batch = true), verbose = true,
maxiters = 400,
abstol = 1.0f-8)

sol = solve(prob, NeuralPDE.NNODE(luxchain, opt), verbose = true, maxiters = 400,
abstol = 1.0f-8)
@test sol.errors[:l2] < 0.5

@test_throws Any solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
@test_throws AssertionError solve(prob, NeuralPDE.NNODE(luxchain, opt; batch = true), verbose = true,
maxiters = 400,
abstol = 1.0f-8)

Expand Down Expand Up @@ -214,7 +214,7 @@ u0 = [0.0f0, -1.0f0 / 2pi]
linear_analytic = (u0, p, t) -> [sin(2pi * t) / 2pi, -cos(2pi * t) / 2pi]
odefunction = ODEFunction(linear, analytic = linear_analytic)
prob = ODEProblem(odefunction, u0, tspan)
chain = Flux.Chain(Dense(1, 10, σ), Dense(10, 2))
chain = Flux.Chain(Dense(1, 10, σ), Dense(10, 2)) |> Flux.f64
opt = OptimizationOptimisers.Adam(0.1)
alg = NeuralPDE.NNODE(chain, opt; autodiff = false)

Expand Down Expand Up @@ -313,7 +313,7 @@ sol1 = solve(prob, alg1, verbose = true, abstol = 1.0f-10, maxiters = 200)
@test sol1.errors[:l2] < 0.5

# StochasticTraining(Flux Chain)
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1))
chain = Flux.Chain(Dense(1, 5, σ), Dense(5, 1)) |> Flux.f64

(u_, t_) = (u_analytical(ts), ts)
function additional_loss(phi, θ)
Expand Down
Loading
Loading