Skip to content

Commit

Permalink
Merge pull request #615 from SciML/zygotedocs
Browse files Browse the repository at this point in the history
Fix zygote constraint bug and update rosenbrock doc
  • Loading branch information
Vaibhavdixit02 authored Oct 23, 2023
2 parents e8a682e + 69df7d1 commit 75e83b3
Show file tree
Hide file tree
Showing 4 changed files with 47 additions and 15 deletions.
53 changes: 41 additions & 12 deletions docs/src/examples/rosenbrock.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,37 +22,46 @@ _p = [1.0, 100.0]
f = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff())
l1 = rosenbrock(x0, _p)
prob = OptimizationProblem(f, x0, _p)
```

## Optim.jl Solvers

using OptimizationOptimJL
# Start with some derivative-free optimizers
### Start with some derivative-free optimizers

```@example rosenbrock
using OptimizationOptimJL
sol = solve(prob, SimulatedAnnealing())
prob = OptimizationProblem(f, x0, _p, lb = [-1.0, -1.0], ub = [0.8, 0.8])
sol = solve(prob, SAMIN())
l1 = rosenbrock(x0, _p)
prob = OptimizationProblem(rosenbrock, x0, _p)
sol = solve(prob, NelderMead())
```

# Now a gradient-based optimizer with forward-mode automatic differentiation
### Now a gradient-based optimizer with forward-mode automatic differentiation

```@example rosenbrock
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff())
prob = OptimizationProblem(optf, x0, _p)
sol = solve(prob, BFGS())
```

# Now a second order optimizer using Hessians generated by forward-mode automatic differentiation
### Now a second order optimizer using Hessians generated by forward-mode automatic differentiation

```@example rosenbrock
sol = solve(prob, Newton())
```

# Now a second order Hessian-free optimizer
### Now a second order Hessian-free optimizer

```@example rosenbrock
sol = solve(prob, Optim.KrylovTrustRegion())
```

# Now derivative-based optimizers with various constraints
### Now derivative-based optimizers with various constraints

```@example rosenbrock
cons = (res, x, p) -> res .= [x[1]^2 + x[2]^2]
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff(); cons = cons)
Expand All @@ -68,24 +77,34 @@ sol = solve(prob, IPNewton())
prob = OptimizationProblem(optf, x0, _p, lcons = [0.5], ucons = [0.5],
lb = [-500.0, -500.0], ub = [50.0, 50.0])
sol = solve(prob, IPNewton()) # Notice now that x[1]^2 + x[2]^2 ≈ 0.5:
# cons(sol.u, _p) = 0.49999999999999994
sol = solve(prob, IPNewton())
# Notice now that x[1]^2 + x[2]^2 ≈ 0.5:
res = zeros(1)
cons(res, sol.u, _p)
println(res)
```

```@example rosenbrock
function con_c(res, x, p)
res .= [x[1]^2 + x[2]^2]
end
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff(); cons = con_c)
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [0.25^2])
sol = solve(prob, IPNewton()) # -Inf < cons_circ(sol.u, _p) = 0.25^2
```

## Evolutionary.jl Solvers

```@example rosenbrock
using OptimizationEvolutionary
sol = solve(prob, CMAES(μ = 40, λ = 100), abstol = 1e-15) # -Inf < cons_circ(sol.u, _p) = 0.25^2
```

## IPOPT through OptimizationMOI

```@example rosenbrock
using OptimizationMOI, Ipopt
function con2_c(res, x, p)
Expand All @@ -95,38 +114,48 @@ end
optf = OptimizationFunction(rosenbrock, Optimization.AutoZygote(); cons = con2_c)
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf, -Inf], ucons = [Inf, Inf])
sol = solve(prob, Ipopt.Optimizer())
```

# Now let's switch over to OptimizationOptimisers with reverse-mode AD
## Now let's switch over to OptimizationOptimisers with reverse-mode AD

```@example rosenbrock
using OptimizationOptimisers
optf = OptimizationFunction(rosenbrock, Optimization.AutoZygote())
prob = OptimizationProblem(optf, x0, _p)
sol = solve(prob, Adam(0.05), maxiters = 1000, progress = false)
```

## Try out CMAEvolutionStrategy.jl's evolutionary methods

```@example rosenbrock
using OptimizationCMAEvolutionStrategy
sol = solve(prob, CMAEvolutionStrategyOpt())
```

## Now try a few NLopt.jl solvers with symbolic differentiation via ModelingToolkit.jl

```@example rosenbrock
using OptimizationNLopt, ModelingToolkit
optf = OptimizationFunction(rosenbrock, Optimization.AutoModelingToolkit())
prob = OptimizationProblem(optf, x0, _p)
sol = solve(prob, Opt(:LN_BOBYQA, 2))
sol = solve(prob, Opt(:LD_LBFGS, 2))
```

## Add some box constraints and solve with a few NLopt.jl methods
### Add some box constraints and solve with a few NLopt.jl methods

```@example rosenbrock
prob = OptimizationProblem(optf, x0, _p, lb = [-1.0, -1.0], ub = [0.8, 0.8])
sol = solve(prob, Opt(:LD_LBFGS, 2))
sol = solve(prob, Opt(:G_MLSL_LDS, 2), local_method = Opt(:LD_LBFGS, 2), maxiters = 10000) #a global optimizer with random starts of local optimization
```

## BlackBoxOptim.jl Solvers

```@example rosenbrock
using OptimizationBBO
prob = Optimization.OptimizationProblem(rosenbrock, x0, _p, lb = [-1.0, 0.2],
prob = Optimization.OptimizationProblem(rosenbrock, [0.0, 0.3], _p, lb = [-1.0, 0.2],
ub = [0.8, 0.43])
sol = solve(prob, BBO_adaptive_de_rand_1_bin()) # -1.0 ≤ x[1] ≤ 0.8, 0.2 ≤ x[2] ≤ 0.43
```
Expand Down
2 changes: 2 additions & 0 deletions docs/src/optimization_packages/prima.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,8 @@ The five Powell's algorithms of the prima library are provided by the PRIMA.jl p
`COBYLA`: (Constrained Optimization BY Linear Approximations) is for general constrained problems with bound constraints, non-linear constraints, linear equality constraints, and linear inequality constraints.

```@example PRIMA
using Optimization, OptimizationPRIMA
rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
x0 = zeros(2)
_p = [1.0, 100.0]
Expand Down
4 changes: 2 additions & 2 deletions ext/OptimizationZygoteExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -124,12 +124,12 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
cons = nothing
else
cons = (res, θ) -> f.cons(res, θ, cache.p)
cons_oop = (x) -> (_res = zeros(eltype(x), num_cons); cons(_res, x); _res)
cons_oop = (x) -> (_res = Zygote.Buffer(x, num_cons); cons(_res, x); copy(_res))
end

if cons !== nothing && f.cons_j === nothing
cons_j = function (J, θ)
J .= Zygote.jacobian(cons_oop, θ)
J .= first(Zygote.jacobian(cons_oop, θ))
end
else
cons_j = (J, θ) -> f.cons_j(J, θ, cache.p)
Expand Down
3 changes: 2 additions & 1 deletion lib/OptimizationPRIMA/src/OptimizationPRIMA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,8 @@ SciMLBase.allowsconstraints(::Union{LINCOA, COBYLA}) = true
SciMLBase.allowsbounds(opt::Union{BOBYQA, LINCOA, COBYLA}) = true
SciMLBase.requiresconstraints(opt::COBYLA) = true

function Optimization.OptimizationCache(prob::SciMLBase.OptimizationProblem, opt::PRIMASolvers, data;
function Optimization.OptimizationCache(prob::SciMLBase.OptimizationProblem,
opt::PRIMASolvers, data;
callback = Optimization.DEFAULT_CALLBACK,
maxiters::Union{Number, Nothing} = nothing,
maxtime::Union{Number, Nothing} = nothing,
Expand Down

0 comments on commit 75e83b3

Please sign in to comment.