Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Setup tape compilation for ReverseDiff #590

Merged
merged 7 commits into from
Sep 19, 2023

Conversation

ChrisRackauckas
Copy link
Member

import Optimization
using ReverseDiff, Enzyme, BenchmarkTools

lookup_pg = Dict(5 => 11, 4 => 13, 2 => 15, 3 => 17, 1 => 19)
ref_gen_idxs = [5, 4, 2, 3, 1]
cost_arrs = Dict(5 => [0.0, 1000.0, 0.0], 4 => [0.0, 4000.0, 0.0], 2 => [0.0, 1500.0, 0.0], 3 => [0.0, 3000.0, 0.0], 1 => [0.0, 1400.0, 0.0])

opf_objective = let lookup_pg=lookup_pg, ref_gen_idxs=ref_gen_idxs, cost_arrs=cost_arrs
    function (x, _)
        #start = time()
        cost = 0.0
        for i in ref_gen_idxs
            pg = x[lookup_pg[i]]
            _cost_arr = cost_arrs[i]
            cost += _cost_arr[1]*pg^2 + _cost_arr[2]*pg + _cost_arr[3]
        end
        #total_callback_time += time() - start
        return cost
    end
end

optprob = Optimization.OptimizationFunction(opf_objective, Optimization.AutoReverseDiff(true))

test_u0 = [0.6292298794022337, 0.30740951571225206, 0.0215258802699263, 0.38457509230779996, 0.9419186480931858, 0.34961116773074874, 0.875763562401991, 0.3203478635827923, 0.6354060958226175, 0.45537545721771266, 0.3120599359696674, 0.2421238802331842, 0.886455177641366, 0.49797378087768696, 0.652913329799645, 0.03590201299300255, 0.5618806749518928, 0.8142146688533769, 0.3973557130434364, 0.27827135011662674, 0.16456134856048643, 0.7465018431665373, 0.4898329811551083, 0.6966035226583556, 0.7419662648518377, 0.8505905798503723, 0.27102126066405097, 0.1988238097281576, 0.09684601934490256, 0.49238142828542797, 0.1366594202307445, 0.6337080281764231, 0.28814906958008235, 0.5404996094640431, 0.015153517398975858, 0.6338449294034381, 0.5165464961007717, 0.572879113636733, 0.9652420600585092, 0.26535868365228543, 0.865686920119479, 0.38426996353892773, 0.007412077949221274, 0.3889835001514599]
test_obj = 7079.190664351089
test_cons = [0.0215258802699263, -1.0701734802505833, -5.108902216849063, -3.49724505910433, -2.617834191007569, 0.5457423426033834, -0.7150251969424766, -2.473175092089014, -2.071687022809815, -1.5522321037165985, -1.0107399030803794, 3.0047739260369246, 0.2849522377447594, -2.8227966798520674, 3.2236954017592256, 1.0793383525116511, -1.633412293595111, -3.1618224299953224, -0.7775962590542184, 1.7252573527333024, -4.23535583005632, -1.7030832394691608, 1.5810450617647889, -0.33289810365419437, 0.19476447251065077, 1.0688558672739048, 1.563372246165339, 9.915310272572729, 1.4932615291788414, 2.0016715378998793, -1.4038702698147258, -0.8834081057449231, 0.21730536348839036, -7.40879932706212, -1.6000837514115611, 0.8542376821320647, 0.06615508569119477, -0.6077039991323074, 0.6138802155526912, 0.0061762164203837955, -0.3065125522705683, 0.5843454392910835, 0.7251928172073308, 1.2740182727083802, 0.11298343104675009, 0.2518186223833513, 0.4202616621130535, 0.3751697141306502, 0.4019890236200105, 0.5950107614751935, 1.0021074654956683, 0.897077248544158, 0.15136310228960612]
res = zero(test_u0)

_f = Optimization.instantiate_function(optprob, test_u0, Optimization.AutoReverseDiff(false), nothing)
_f.f(test_u0, nothing)
@btime $(_f.grad)($res, $test_u0); # 3.675 μs (144 allocations: 5.31 KiB)

_f2 = Optimization.instantiate_function(optprob, test_u0, Optimization.AutoReverseDiff(true), nothing)
_f2.f(test_u0, nothing)
@btime $(_f2.grad)($res, $test_u0); # 825.882 ns (0 allocations: 0 bytes)

_f3 = Optimization.instantiate_function(optprob, test_u0, Optimization.AutoEnzyme(), nothing)
_f3.f(test_u0, nothing)
@btime $(_f3.grad)($res, $test_u0); # 704.138 ns (0 allocations: 0 bytes)

```julia
import Optimization
using ReverseDiff, Enzyme, BenchmarkTools

lookup_pg = Dict(5 => 11, 4 => 13, 2 => 15, 3 => 17, 1 => 19)
ref_gen_idxs = [5, 4, 2, 3, 1]
cost_arrs = Dict(5 => [0.0, 1000.0, 0.0], 4 => [0.0, 4000.0, 0.0], 2 => [0.0, 1500.0, 0.0], 3 => [0.0, 3000.0, 0.0], 1 => [0.0, 1400.0, 0.0])

opf_objective = let lookup_pg=lookup_pg, ref_gen_idxs=ref_gen_idxs, cost_arrs=cost_arrs
    function (x, _)
        #start = time()
        cost = 0.0
        for i in ref_gen_idxs
            pg = x[lookup_pg[i]]
            _cost_arr = cost_arrs[i]
            cost += _cost_arr[1]*pg^2 + _cost_arr[2]*pg + _cost_arr[3]
        end
        #total_callback_time += time() - start
        return cost
    end
end

optprob = Optimization.OptimizationFunction(opf_objective, Optimization.AutoReverseDiff(true))

test_u0 = [0.6292298794022337, 0.30740951571225206, 0.0215258802699263, 0.38457509230779996, 0.9419186480931858, 0.34961116773074874, 0.875763562401991, 0.3203478635827923, 0.6354060958226175, 0.45537545721771266, 0.3120599359696674, 0.2421238802331842, 0.886455177641366, 0.49797378087768696, 0.652913329799645, 0.03590201299300255, 0.5618806749518928, 0.8142146688533769, 0.3973557130434364, 0.27827135011662674, 0.16456134856048643, 0.7465018431665373, 0.4898329811551083, 0.6966035226583556, 0.7419662648518377, 0.8505905798503723, 0.27102126066405097, 0.1988238097281576, 0.09684601934490256, 0.49238142828542797, 0.1366594202307445, 0.6337080281764231, 0.28814906958008235, 0.5404996094640431, 0.015153517398975858, 0.6338449294034381, 0.5165464961007717, 0.572879113636733, 0.9652420600585092, 0.26535868365228543, 0.865686920119479, 0.38426996353892773, 0.007412077949221274, 0.3889835001514599]
test_obj = 7079.190664351089
test_cons = [0.0215258802699263, -1.0701734802505833, -5.108902216849063, -3.49724505910433, -2.617834191007569, 0.5457423426033834, -0.7150251969424766, -2.473175092089014, -2.071687022809815, -1.5522321037165985, -1.0107399030803794, 3.0047739260369246, 0.2849522377447594, -2.8227966798520674, 3.2236954017592256, 1.0793383525116511, -1.633412293595111, -3.1618224299953224, -0.7775962590542184, 1.7252573527333024, -4.23535583005632, -1.7030832394691608, 1.5810450617647889, -0.33289810365419437, 0.19476447251065077, 1.0688558672739048, 1.563372246165339, 9.915310272572729, 1.4932615291788414, 2.0016715378998793, -1.4038702698147258, -0.8834081057449231, 0.21730536348839036, -7.40879932706212, -1.6000837514115611, 0.8542376821320647, 0.06615508569119477, -0.6077039991323074, 0.6138802155526912, 0.0061762164203837955, -0.3065125522705683, 0.5843454392910835, 0.7251928172073308, 1.2740182727083802, 0.11298343104675009, 0.2518186223833513, 0.4202616621130535, 0.3751697141306502, 0.4019890236200105, 0.5950107614751935, 1.0021074654956683, 0.897077248544158, 0.15136310228960612]
res = zero(test_u0)

_f = Optimization.instantiate_function(optprob, test_u0, Optimization.AutoReverseDiff(false), nothing)
_f.f(test_u0, nothing)
@Btime $(_f.grad)($res, $test_u0); # 3.675 μs (144 allocations: 5.31 KiB)

_f2 = Optimization.instantiate_function(optprob, test_u0, Optimization.AutoReverseDiff(true), nothing)
_f2.f(test_u0, nothing)
@Btime $(_f2.grad)($res, $test_u0); # 825.882 ns (0 allocations: 0 bytes)

_f3 = Optimization.instantiate_function(optprob, test_u0, Optimization.AutoEnzyme(), nothing)
_f3.f(test_u0, nothing)
@Btime $(_f3.grad)($res, $test_u0); # 704.138 ns (0 allocations: 0 bytes)
```
@codecov
Copy link

codecov bot commented Sep 13, 2023

Codecov Report

Merging #590 (0f6c2f1) into master (c3f0da8) will decrease coverage by 1.14%.
The diff coverage is 0.00%.

@@            Coverage Diff            @@
##           master    #590      +/-   ##
=========================================
- Coverage    9.80%   8.67%   -1.14%     
=========================================
  Files          40      40              
  Lines        2539    2663     +124     
=========================================
- Hits          249     231      -18     
- Misses       2290    2432     +142     
Files Changed Coverage Δ
ext/OptimizationEnzymeExt.jl 0.00% <0.00%> (ø)
ext/OptimizationReverseDiffExt.jl 0.00% <0.00%> (ø)
ext/OptimizationSparseDiffExt.jl 0.00% <0.00%> (ø)

... and 1 file with indirect coverage changes

📣 We’re building smart automated test selection to slash your CI/CD build times. Learn more

@Vaibhavdixit02 Vaibhavdixit02 merged commit 1167183 into master Sep 19, 2023
@Vaibhavdixit02 Vaibhavdixit02 deleted the reversediff_tape_compilaton branch September 19, 2023 00:01
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants