Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add constraints support for NLopt #799

Merged
merged 7 commits into from
Sep 19, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion lib/OptimizationNLopt/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,11 @@ version = "0.2.2"
[deps]
NLopt = "76087f3c-5699-56af-9a33-bf431cd00edd"
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"

[compat]
NLopt = "0.6, 1"
NLopt = "1.0.3"
Optimization = "3.21"
Reexport = "1.2"
julia = "1"
Expand Down
83 changes: 56 additions & 27 deletions lib/OptimizationNLopt/src/OptimizationNLopt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ module OptimizationNLopt
using Reexport
@reexport using NLopt, Optimization
using Optimization.SciMLBase
using Optimization: deduce_retcode

(f::NLopt.Algorithm)() = f

Expand Down Expand Up @@ -63,6 +64,24 @@ function SciMLBase.requiresconsjac(opt::Union{NLopt.Algorithm, NLopt.Opt}) #http
end
end

function SciMLBase.allowsconstraints(opt::NLopt.Algorithm)
str_opt = string(opt)
if occursin("AUGLAG", str_opt) || occursin("CCSA", str_opt) || occursin("MMA", str_opt) || occursin("COBYLA", str_opt) || occursin("ISRES", str_opt) || occursin("AGS", str_opt) || occursin("ORIG_DIRECT", str_opt) || occursin("SLSQP", str_opt)
return true
else
return false
end
end

Vaibhavdixit02 marked this conversation as resolved.
Show resolved Hide resolved
function SciMLBase.__init(prob::SciMLBase.OptimizationProblem, opt::NLopt.Algorithm,
data = Optimization.DEFAULT_DATA; cons_tol = 1e-6,
Vaibhavdixit02 marked this conversation as resolved.
Show resolved Hide resolved
callback = (args...) -> (false),
progress = false, kwargs...)
return OptimizationCache(prob, opt, data; cons_tol, callback, progress,
Vaibhavdixit02 marked this conversation as resolved.
Show resolved Hide resolved
kwargs...)
end


function __map_optimizer_args!(cache::OptimizationCache, opt::NLopt.Opt;
callback = nothing,
maxiters::Union{Number, Nothing} = nothing,
Expand Down Expand Up @@ -103,7 +122,9 @@ function __map_optimizer_args!(cache::OptimizationCache, opt::NLopt.Opt;

# add optimiser options from kwargs
for j in kwargs
eval(Meta.parse("NLopt." * string(j.first) * "!"))(opt, j.second)
if j.first != :cons_tol
eval(Meta.parse("NLopt." * string(j.first) * "!"))(opt, j.second)
end
end

if cache.ub !== nothing
Expand Down Expand Up @@ -132,31 +153,6 @@ function __map_optimizer_args!(cache::OptimizationCache, opt::NLopt.Opt;
return nothing
end

function __nlopt_status_to_ReturnCode(status::Symbol)
if status in Symbol.([
NLopt.SUCCESS,
NLopt.STOPVAL_REACHED,
NLopt.FTOL_REACHED,
NLopt.XTOL_REACHED,
NLopt.ROUNDOFF_LIMITED
])
return ReturnCode.Success
elseif status == Symbol(NLopt.MAXEVAL_REACHED)
return ReturnCode.MaxIters
elseif status == Symbol(NLopt.MAXTIME_REACHED)
return ReturnCode.MaxTime
elseif status in Symbol.([
NLopt.OUT_OF_MEMORY,
NLopt.INVALID_ARGS,
NLopt.FAILURE,
NLopt.FORCED_STOP
])
return ReturnCode.Failure
else
return ReturnCode.Default
end
end

function SciMLBase.__solve(cache::OptimizationCache{
F,
RC,
Expand Down Expand Up @@ -204,6 +200,8 @@ function SciMLBase.__solve(cache::OptimizationCache{
return _loss(θ)
end



opt_setup = if isa(cache.opt, NLopt.Opt)
if ndims(cache.opt) != length(cache.u0)
error("Passed NLopt.Opt optimization dimension does not match OptimizationProblem dimension.")
Expand All @@ -219,6 +217,37 @@ function SciMLBase.__solve(cache::OptimizationCache{
NLopt.min_objective!(opt_setup, fg!)
end

if cache.f.cons !== nothing
eqinds = map((y) -> y[1]==y[2], zip(cache.lcons, cache.ucons))
ineqinds = map((y) -> y[1]!=y[2], zip(cache.lcons, cache.ucons))
if sum(ineqinds) > 0
ineqcons = function (res, θ, J)
cons_cache = zeros(eltype(res), sum(eqinds)+sum(ineqinds))
cache.f.cons(cons_cache, θ)
res .= @view(cons_cache[ineqinds])
if length(J) > 0
Jcache = zeros(eltype(J), sum(ineqinds)+sum(eqinds), length(θ))
cache.f.cons_j(Jcache, θ)
J .= @view(Jcache[ineqinds, :])'
end
end
NLopt.inequality_constraint!(opt_setup, ineqcons, [cache.solver_args.cons_tol for i in 1:sum(ineqinds)])
end
if sum(eqinds) > 0
eqcons = function (res, θ, J)
cons_cache = zeros(eltype(res), sum(eqinds)+sum(ineqinds))
cache.f.cons(cons_cache, θ)
res .= @view(cons_cache[eqinds])
if length(J) > 0
Jcache = zeros(eltype(res), sum(eqinds)+sum(ineqinds), length(θ))
cache.f.cons_j(Jcache, θ)
J .= @view(Jcache[eqinds, :])'
end
end
NLopt.equality_constraint!(opt_setup, eqcons, [cache.solver_args.cons_tol for i in 1:sum(eqinds)])
end
end

maxiters = Optimization._check_and_convert_maxiters(cache.solver_args.maxiters)
maxtime = Optimization._check_and_convert_maxtime(cache.solver_args.maxtime)

Expand All @@ -229,7 +258,7 @@ function SciMLBase.__solve(cache::OptimizationCache{
t0 = time()
(minf, minx, ret) = NLopt.optimize(opt_setup, cache.u0)
t1 = time()
retcode = __nlopt_status_to_ReturnCode(ret)
retcode = deduce_retcode(ret)

if retcode == ReturnCode.Failure
@warn "NLopt failed to converge: $(ret)"
Expand Down
50 changes: 44 additions & 6 deletions lib/OptimizationNLopt/test/runtests.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
using OptimizationNLopt, Optimization, Zygote
using Test
using Test, Random

@testset "OptimizationNLopt.jl" begin
rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
Expand All @@ -16,7 +16,7 @@ using Test
optprob = OptimizationFunction(rosenbrock, Optimization.AutoZygote())
prob = OptimizationProblem(optprob, x0, _p)

sol = solve(prob, NLopt.Opt(:LN_BOBYQA, 2))
sol = solve(prob, NLopt.Opt(:LD_LBFGS, 2))
@test sol.retcode == ReturnCode.Success
@test 10 * sol.objective < l1

Expand All @@ -26,10 +26,6 @@ using Test
@test sol.retcode == ReturnCode.Success
@test 10 * sol.objective < l1

sol = solve(prob, NLopt.Opt(:LD_LBFGS, 2))
@test sol.retcode == ReturnCode.Success
@test 10 * sol.objective < l1

sol = solve(prob, NLopt.Opt(:G_MLSL_LDS, 2), local_method = NLopt.Opt(:LD_LBFGS, 2),
maxiters = 10000)
@test sol.retcode == ReturnCode.MaxIters
Expand Down Expand Up @@ -82,4 +78,46 @@ using Test
#nlopt gives the last best not the one where callback stops
@test sol.objective < 0.8
end

@testset "constrained" begin
cons = (res, x, p) -> res .= [x[1]^2 + x[2]^2 - 1.0]
x0 = zeros(2)
optprob = OptimizationFunction(rosenbrock, Optimization.AutoZygote();
cons = cons)
prob = OptimizationProblem(optprob, x0, _p, lcons = [0.0], ucons = [0.0])
sol = solve(prob, NLopt.LN_COBYLA())
@test sol.retcode == ReturnCode.Success
@test 10 * sol.objective < l1

Random.seed!(1)
prob = OptimizationProblem(optprob, rand(2), _p,
lcons = [0.0], ucons = [0.0])

sol = solve(prob, NLopt.LD_SLSQP())
@test sol.retcode == ReturnCode.Success
@test 10 * sol.objective < l1

Random.seed!(1)
prob = OptimizationProblem(optprob, rand(2), _p,
lcons = [0.0], ucons = [0.0])
sol = solve(prob, NLopt.AUGLAG(), local_method = NLopt.LD_LBFGS())
@test sol.retcode == ReturnCode.Success
@test 10 * sol.objective < l1

function con2_c(res, x, p)
res .= [x[1]^2 + x[2]^2 - 1.0, x[2] * sin(x[1]) - x[1] - 2.0]
end

optprob = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff();cons = con2_c)
Random.seed!(1)
prob = OptimizationProblem(optprob, rand(2), _p, lcons = [0.0, -Inf], ucons = [0.0, 0.0])
sol = solve(prob, NLopt.LD_AUGLAG(), local_method = NLopt.LD_LBFGS())
@test sol.retcode == ReturnCode.Success
@test 10 * sol.objective < l1

prob = OptimizationProblem(optprob, rand(2), _p, lcons = [-Inf, -Inf], ucons = [0.0, 0.0], lb = [-1.0, -1.0], ub = [1.0, 1.0])
sol = solve(prob, NLopt.GN_ISRES(), maxiters = 1000)
@test sol.retcode == ReturnCode.MaxIters
@test 10 * sol.objective < l1
end
end
3 changes: 2 additions & 1 deletion src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,8 @@ const STOP_REASON_MAP = Dict(
r"STOP: XTOL.TOO.SMALL" => ReturnCode.ConvergenceFailure,
r"STOP: TERMINATION" => ReturnCode.Terminated,
r"Optimization completed" => ReturnCode.Success,
r"Convergence achieved" => ReturnCode.Success
r"Convergence achieved" => ReturnCode.Success,
r"ROUNDOFF_LIMITED" => ReturnCode.Success
)

# Function to deduce ReturnCode from a stop_reason string using the dictionary
Expand Down
Loading