Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add NonlinearLeastSquaresProblem #500

Merged
merged 2 commits into from
Oct 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "SciMLBase"
uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
authors = ["Chris Rackauckas <[email protected]> and contributors"]
version = "2.3.1"
version = "2.4.0"

[deps]
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
Expand Down
6 changes: 3 additions & 3 deletions src/SciMLBase.jl
Original file line number Diff line number Diff line change
Expand Up @@ -769,9 +769,9 @@ export isinplace

export solve, solve!, init, discretize, symbolic_discretize

export LinearProblem,
NonlinearProblem, IntervalNonlinearProblem,
IntegralProblem, SampledIntegralProblem, OptimizationProblem
export LinearProblem, NonlinearProblem, IntervalNonlinearProblem,
IntegralProblem, SampledIntegralProblem, OptimizationProblem,
NonlinearLeastSquaresProblem

export DiscreteProblem, ImplicitDiscreteProblem
export SteadyStateProblem, SteadyStateSolution
Expand Down
79 changes: 79 additions & 0 deletions src/problems/basic_problems.jl
Original file line number Diff line number Diff line change
Expand Up @@ -312,6 +312,85 @@ function NonlinearProblem(prob::AbstractODEProblem)
NonlinearProblem{isinplace(prob)}(prob.f, prob.u0, prob.p)
end

@doc doc"""
Defines a nonlinear least squares problem.

## Mathematical Specification of a Nonlinear Least Squares Problem

To define a Nonlinear Problem, you simply need to give the function ``f`` which defines the
nonlinear system:

```math
\underset{x}{\min} \| f(x, p) \|
```

and an initial guess ``u_0`` for the minimization problem. ``f`` should be specified as
``f(u, p)`` (or in-place as ``f(du, u, p)``), and ``u_0``` should be an AbstractArray (or
number) whose geometry matches the desired geometry of ``u``. Note that we are not limited
to numbers or vectors for ``u_0``; one is allowed to provide ``u_0`` as arbitrary
matrices / higher-dimension tensors as well.

## Problem Type

### Constructors

```julia
NonlinearLeastSquaresProblem(f::NonlinearFunction, u0, p=NullParameters(); kwargs...)
NonlinearLeastSquaresProblem{isinplace}(f, u0, p=NullParameters(); kwargs...)
```

`isinplace` optionally sets whether the function is in-place or not. This is
determined automatically, but not inferred.

Parameters are optional, and if not given, then a `NullParameters()` singleton
will be used, which will throw nice errors if you try to index non-existent
parameters.

For specifying Jacobians and mass matrices, see the
[NonlinearFunctions](@ref nonlinearfunctions) page.

### Fields

* `f`: The function in the problem.
* `u0`: The initial guess for the solution.
* `p`: The parameters for the problem. Defaults to `NullParameters`.
* `kwargs`: The keyword arguments passed on to the solvers.
"""
struct NonlinearLeastSquaresProblem{uType, isinplace, P, F, K} <:
AbstractNonlinearProblem{uType, isinplace}
f::F
u0::uType
p::P
kwargs::K

@add_kwonly function NonlinearLeastSquaresProblem{iip}(f::AbstractNonlinearFunction{
iip}, u0, p = NullParameters(); kwargs...) where {iip}
warn_paramtype(p)
return new{typeof(u0), iip, typeof(p), typeof(f), typeof(kwargs)}(f, u0, p, kwargs)
end

function NonlinearLeastSquaresProblem{iip}(f, u0, p = NullParameters()) where {iip}
return NonlinearLeastSquaresProblem{iip}(NonlinearFunction{iip}(f), u0, p)
end
end

TruncatedStacktraces.@truncate_stacktrace NonlinearLeastSquaresProblem 2 1

"""
$(SIGNATURES)

Define a nonlinear least squares problem using an instance of
[`AbstractNonlinearFunction`](@ref AbstractNonlinearFunction).
"""
function NonlinearLeastSquaresProblem(f::AbstractNonlinearFunction, u0,
p = NullParameters(); kwargs...)
return NonlinearLeastSquaresProblem{isinplace(f)}(f, u0, p; kwargs...)
end

function NonlinearLeastSquaresProblem(f, u0, p = NullParameters(); kwargs...)
return NonlinearLeastSquaresProblem(NonlinearFunction(f), u0, p; kwargs...)
end

@doc doc"""

Defines an integral problem.
Expand Down
32 changes: 32 additions & 0 deletions src/remake.jl
Original file line number Diff line number Diff line change
Expand Up @@ -369,6 +369,38 @@ function remake(prob::NonlinearProblem;
end
end


"""
remake(prob::NonlinearLeastSquaresProblem; f = missing, u0 = missing, p = missing,
kwargs = missing, _kwargs...)

Remake the given `NonlinearLeastSquaresProblem`.
"""
function remake(prob::NonlinearLeastSquaresProblem; f = missing, u0 = missing, p = missing,
kwargs = missing, _kwargs...)
if p === missing && u0 === missing
p, u0 = prob.p, prob.u0
else # at least one of them has a value
if p === missing
p = prob.p
end
if u0 === missing
u0 = prob.u0
end
end

if f === missing
f = prob.f
end

if kwargs === missing
return NonlinearLeastSquaresProblem{isinplace(prob)}(; f, u0, p, prob.kwargs...,
_kwargs...)
else
return NonlinearLeastSquaresProblem{isinplace(prob)}(; f, u0, p, kwargs...)
end
end

# overloaded in MTK to intercept symbolic remake
function process_p_u0_symbolic(prob, p, u0)
if typeof(prob) <: Union{AbstractDEProblem, OptimizationProblem, NonlinearProblem}
Expand Down