-
-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
gpogudin
committed
Jan 26, 2024
1 parent
13cac29
commit 0789d73
Showing
39 changed files
with
4,063 additions
and
4,140 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,38 +1,36 @@ | ||
if GROUP == "All" || GROUP == "Core" | ||
@testset "RationalFunctionField" begin | ||
p = 0.99 | ||
R, (a, b, c) = QQ["a", "b", "c"] | ||
@testset "RationalFunctionField" begin | ||
p = 0.99 | ||
R, (a, b, c) = QQ["a", "b", "c"] | ||
|
||
f1 = [a, b, a + b + c] | ||
f2 = [2c, 3b, 5a] | ||
rff1 = StructuralIdentifiability.RationalFunctionField(f1) | ||
rff2 = StructuralIdentifiability.RationalFunctionField(f2) | ||
@test StructuralIdentifiability.fields_equal(rff1, rff2, p) | ||
@test all(StructuralIdentifiability.field_contains(rff1, [zero(R), one(R)], p)) | ||
@test all(StructuralIdentifiability.field_contains(rff1, [7a, 9b, 11c], p)) | ||
@test all(StructuralIdentifiability.field_contains(rff2, [7a, 9b, 11c], p)) | ||
f1 = [a, b, a + b + c] | ||
f2 = [2c, 3b, 5a] | ||
rff1 = StructuralIdentifiability.RationalFunctionField(f1) | ||
rff2 = StructuralIdentifiability.RationalFunctionField(f2) | ||
@test StructuralIdentifiability.fields_equal(rff1, rff2, p) | ||
@test all(StructuralIdentifiability.field_contains(rff1, [zero(R), one(R)], p)) | ||
@test all(StructuralIdentifiability.field_contains(rff1, [7a, 9b, 11c], p)) | ||
@test all(StructuralIdentifiability.field_contains(rff2, [7a, 9b, 11c], p)) | ||
|
||
s1, s2 = a + b + c, a^2 + b^2 + c^2 | ||
f1 = [s1, s2] | ||
rff1 = StructuralIdentifiability.RationalFunctionField(f1) | ||
@test !any( | ||
StructuralIdentifiability.field_contains(rff1, [a, b + c, a * b + b * c], p), | ||
) | ||
@test all( | ||
StructuralIdentifiability.field_contains(rff1, [a * b + b * c + a * c], p), | ||
) | ||
@test all(StructuralIdentifiability.field_contains(rff1, [(s1)^8 - (s2)^9 + 89], p)) | ||
s1, s2 = a + b + c, a^2 + b^2 + c^2 | ||
f1 = [s1, s2] | ||
rff1 = StructuralIdentifiability.RationalFunctionField(f1) | ||
@test !any( | ||
StructuralIdentifiability.field_contains(rff1, [a, b + c, a * b + b * c], p), | ||
) | ||
@test all( | ||
StructuralIdentifiability.field_contains(rff1, [a * b + b * c + a * c], p), | ||
) | ||
@test all(StructuralIdentifiability.field_contains(rff1, [(s1)^8 - (s2)^9 + 89], p)) | ||
|
||
# Example in Section 5 from | ||
# https://mediatum.ub.tum.de/doc/685465/685465.pdf | ||
R, (x1, x2) = QQ["x1", "x2"] | ||
g1 = (x1^3 + x1 * x2 - 2) // (x1^2 - x2 - 1) | ||
g2 = (x1^2 + x1^2 * x2 + 7) // (x1 - x1^2 * x2^2) | ||
g3 = x1^2 + 3x1 * x2 | ||
g4 = x1 * x2^2 + 5x1 * x2 | ||
g5 = x1^3 * x2 - x2 | ||
rff1 = StructuralIdentifiability.RationalFunctionField([g1, g2, g3, g4, g5]) | ||
rff2 = StructuralIdentifiability.RationalFunctionField([x1, x2]) | ||
@test StructuralIdentifiability.fields_equal(rff1, rff2, p) | ||
end | ||
# Example in Section 5 from | ||
# https://mediatum.ub.tum.de/doc/685465/685465.pdf | ||
R, (x1, x2) = QQ["x1", "x2"] | ||
g1 = (x1^3 + x1 * x2 - 2) // (x1^2 - x2 - 1) | ||
g2 = (x1^2 + x1^2 * x2 + 7) // (x1 - x1^2 * x2^2) | ||
g3 = x1^2 + 3x1 * x2 | ||
g4 = x1 * x2^2 + 5x1 * x2 | ||
g5 = x1^3 * x2 - x2 | ||
rff1 = StructuralIdentifiability.RationalFunctionField([g1, g2, g3, g4, g5]) | ||
rff2 = StructuralIdentifiability.RationalFunctionField([x1, x2]) | ||
@test StructuralIdentifiability.fields_equal(rff1, rff2, p) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,83 +1,81 @@ | ||
if GROUP == "All" || GROUP == "Core" | ||
eq_up_to_the_order(a, b) = issubset(a, b) && issubset(b, a) | ||
eq_up_to_the_order(a, b) = issubset(a, b) && issubset(b, a) | ||
|
||
@testset "Linear relations over the rationals" begin | ||
R, (a, b, c) = QQ["a", "b", "c"] | ||
@testset "Linear relations over the rationals" begin | ||
R, (a, b, c) = QQ["a", "b", "c"] | ||
|
||
f = [a + 9] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test eq_up_to_the_order(relations, [a]) | ||
f = [a + 9] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test eq_up_to_the_order(relations, [a]) | ||
|
||
f = [a * b // R(1), (b * c + a * b) // (a * b)] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test eq_up_to_the_order(relations, [a * b // R(1), b * c // R(1)]) | ||
f = [a * b // R(1), (b * c + a * b) // (a * b)] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test eq_up_to_the_order(relations, [a * b // R(1), b * c // R(1)]) | ||
|
||
R, (a, b, c) = QQ["a", "b", "c"] | ||
f = [a^2 + b^2, a^3 + b^3, a^4 + b^4] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 1) | ||
@test eq_up_to_the_order(relations, [a + b]) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test eq_up_to_the_order(relations, [a + b, a * b, a^2 + b^2]) | ||
R, (a, b, c) = QQ["a", "b", "c"] | ||
f = [a^2 + b^2, a^3 + b^3, a^4 + b^4] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 1) | ||
@test eq_up_to_the_order(relations, [a + b]) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test eq_up_to_the_order(relations, [a + b, a * b, a^2 + b^2]) | ||
|
||
f = [9a^7 + 10b^6, b^10 - 5b^2] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 1) | ||
@test eq_up_to_the_order(relations, empty(f)) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 7) | ||
@test eq_up_to_the_order(relations, [a^7 + (10 // 9) * b^6]) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 12) | ||
@test eq_up_to_the_order(relations, [a^7 + (10 // 9) * b^6, b^10 - 5b^2]) | ||
f = [9a^7 + 10b^6, b^10 - 5b^2] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 1) | ||
@test eq_up_to_the_order(relations, empty(f)) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 7) | ||
@test eq_up_to_the_order(relations, [a^7 + (10 // 9) * b^6]) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 12) | ||
@test eq_up_to_the_order(relations, [a^7 + (10 // 9) * b^6, b^10 - 5b^2]) | ||
|
||
# Regression tests | ||
### | ||
# LV model. | ||
R, (x1, p2, p4, y1, x2, x3, u, p1, p3) = | ||
QQ["x1", "p2", "p4", "y1", "x2", "x3", "u", "p1", "p3"] | ||
f = [ | ||
x3 // one(R), | ||
x2 * x1 // one(R), | ||
p1 * p3 // one(R), | ||
p2 * p4 // one(R), | ||
p1 + p3 // one(R), | ||
(p2 * x2 + p4 * x1) // (x2 * x1), | ||
(p2 * x2 - p4 * x1) // (p1 - p3), | ||
] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree( | ||
rff, | ||
2, | ||
strategy = :monte_carlo, | ||
) | ||
@test (x1 * p4 + p2 * x2) // one(R) in relations | ||
# Regression tests | ||
### | ||
# LV model. | ||
R, (x1, p2, p4, y1, x2, x3, u, p1, p3) = | ||
QQ["x1", "p2", "p4", "y1", "x2", "x3", "u", "p1", "p3"] | ||
f = [ | ||
x3 // one(R), | ||
x2 * x1 // one(R), | ||
p1 * p3 // one(R), | ||
p2 * p4 // one(R), | ||
p1 + p3 // one(R), | ||
(p2 * x2 + p4 * x1) // (x2 * x1), | ||
(p2 * x2 - p4 * x1) // (p1 - p3), | ||
] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree( | ||
rff, | ||
2, | ||
strategy = :monte_carlo, | ||
) | ||
@test (x1 * p4 + p2 * x2) // one(R) in relations | ||
|
||
### | ||
R, (a, b, c) = QQ["a", "b", "c"] | ||
f = [a, a * b + b * c] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test eq_up_to_the_order(relations, [a, a * b + b * c]) | ||
### | ||
R, (a, b, c) = QQ["a", "b", "c"] | ||
f = [a, a * b + b * c] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test eq_up_to_the_order(relations, [a, a * b + b * c]) | ||
|
||
### | ||
# Some arbitrary generators for the SLIQR model | ||
R, (b, e, In, S, Ninv, s, Q, g, u, a, y, L) = | ||
polynomial_ring(QQ, [:b, :e, :In, :S, :Ninv, :s, :Q, :g, :u, :a, :y, :L]) | ||
f = [ | ||
In // one(R), | ||
s // one(R), | ||
Ninv // one(R), | ||
b // one(R), | ||
(g + a) // one(R), | ||
(e * s * g - s * g + g * a) // one(R), | ||
(e * S - S) // (e * Q), | ||
(e * S * s - S * s + S * a) // e, | ||
(s * Q^2 - Q^2 * a) // (e * g - g), | ||
(e * In + e * L - In - Q - L) // (e * Q), | ||
] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test s * Q - Q * a in relations | ||
end | ||
### | ||
# Some arbitrary generators for the SLIQR model | ||
R, (b, e, In, S, Ninv, s, Q, g, u, a, y, L) = | ||
polynomial_ring(QQ, [:b, :e, :In, :S, :Ninv, :s, :Q, :g, :u, :a, :y, :L]) | ||
f = [ | ||
In // one(R), | ||
s // one(R), | ||
Ninv // one(R), | ||
b // one(R), | ||
(g + a) // one(R), | ||
(e * s * g - s * g + g * a) // one(R), | ||
(e * S - S) // (e * Q), | ||
(e * S * s - S * s + S * a) // e, | ||
(s * Q^2 - Q^2 * a) // (e * g - g), | ||
(e * In + e * L - In - Q - L) // (e * Q), | ||
] | ||
rff = StructuralIdentifiability.RationalFunctionField(f) | ||
relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) | ||
@test s * Q - Q * a in relations | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,32 +1,31 @@ | ||
if GROUP == "All" || GROUP == "Core" | ||
@testset "Check field membership" begin | ||
R, (x, y, z) = Nemo.polynomial_ring(Nemo.QQ, ["x", "y", "z"]) | ||
@testset "Check field membership" begin | ||
R, (x, y, z) = Nemo.polynomial_ring(Nemo.QQ, ["x", "y", "z"]) | ||
|
||
@test field_contains( | ||
RationalFunctionField([[R(1), x + y], [R(1), x * y], [z, (x + y)^2]]), | ||
[(x^2 + y^2) // R(1), (x^3 + y^3) // (z - x * y), R(1) // (z + x + y), z // x], | ||
0.99, | ||
) == [true, true, true, false] | ||
@test field_contains( | ||
RationalFunctionField([[R(1), x + y], [R(1), x * y], [z, (x + y)^2]]), | ||
[(x^2 + y^2) // R(1), (x^3 + y^3) // (z - x * y), R(1) // (z + x + y), z // x], | ||
0.99, | ||
) == [true, true, true, false] | ||
|
||
@test field_contains( | ||
RationalFunctionField([[ | ||
x + y + z, | ||
x^2 + y^2 + z^2, | ||
(x + y + z)^2, | ||
x^3 + y^3 + z^3, | ||
]]), | ||
[x + y + z // 1, x * y * z // 1, x + y + 2 * z // 1, x // (y + z)], | ||
0.99, | ||
) == [true, true, false, false] | ||
@test field_contains( | ||
RationalFunctionField([[ | ||
x + y + z, | ||
x^2 + y^2 + z^2, | ||
(x + y + z)^2, | ||
x^3 + y^3 + z^3, | ||
]]), | ||
[x + y + z // 1, x * y * z // 1, x + y + 2 * z // 1, x // (y + z)], | ||
0.99, | ||
) == [true, true, false, false] | ||
|
||
@test field_contains( | ||
RationalFunctionField([ | ||
x + y + z // 1, | ||
x * y + y * z + z * x // 1, | ||
x * y * z // 1, | ||
]), | ||
[x^2 + y^2 + z^2, x^6 + y^6 + z^6, x - y + z, x^2 - y^2 + z^2], | ||
0.99, | ||
) == [true, true, false, false] | ||
end | ||
@test field_contains( | ||
RationalFunctionField([ | ||
x + y + z // 1, | ||
x * y + y * z + z * x // 1, | ||
x * y * z // 1, | ||
]), | ||
[x^2 + y^2 + z^2, x^6 + y^6 + z^6, x - y + z, x^2 - y^2 + z^2], | ||
0.99, | ||
) == [true, true, false, false] | ||
end | ||
|
Oops, something went wrong.